首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
High performance size-exclusion chromatography (HPSEC) is useful for the molecular size separation of soil humic acids (HAs), but there is no method available for various HAs with different chemical properties. In this paper the authors propose a new preparative HPSEC method for various soil HAs. Three soil HAs with different chemical properties were fractionated by a Shodex OHpak SB-2004 HQ column with 10mM sodium phosphate buffer (pH 7.0)/acetonitrile (3:1, v/v) as an eluent. The HAs eluted within a reasonable column range time (12-25 min) without peak tailing. Preparative HPSEC chromatograms of these HAs indicated that non-size-exclusion effects were suppressed. The separated fractions were analyzed by HPSEC to determine their apparent molecular weights. These decreased sequentially from fraction 1 to fraction 10, suggesting that the HAs had been separated by their molecular size. The size-separated fractions of the soil HA were mixed to compare them with unfractionated HA. The analytical HPSEC chromatogram of the mixed HA was almost identical to that of the unfractionated HA. It appears that the HAs do not adsorb specifically to the column during preparative HPSEC. Our preparative HPSEC method allows for rapid and reproducible separation of various soil HAs by molecular size.  相似文献   

2.
Aquatic fulvic acid (FA) and humic acid (HA) were characterized by an aqueous high-performance size-exclusion chromatography (HPSEC) using a hydrophilic polymeric stationary phase and an aqueous eluent at neutral pH and low-ionic strength (5 mM Na2HPO4; final ionic strength, 13 mM). Employed HPSEC showed low sensitivity of FA to variations in ionic strength (13 and 100 mM) and contents of organic modifier (0.1 or 40% methanol) in aqueous eluent. Under these analytical conditions, peak maxima of relative UV signals versus molecular mass (Mr) defined as M'p and peak maxima of relative mass concentrations versus Mr defined as Mp of FA were shown to be located at 548-690 and 500, respectively. Organic modifier concentrations of 40% methanol in aqueous eluent enabled not only analysis of FA, but also analysis of some aquatic HA by HPSEC. Analysis showed M'p and Mp values of aquatic HAs around 1000 and 600, respectively. Measured molecular mass data of FA were found to be consistent with the recently published data describing low molecular masses of FA. Results recommend the use of the described HPSEC as a simple, rapid, reproducible, low-cost method giving consistent molecular sizes/masses of FA and some aquatic HAs.  相似文献   

3.
The binding of palladium to high-molecular-mass compounds in palladium-treated lettuce is investigated as an example for a biological matrix. The total palladium concentration in lettuce leaves is 10.3 ng/g wet weight. After homogenization, high-molecular-mass compounds (> 10 kDa) are isolated by ultrafiltration. For separation of these palladium species a combination of preparative gel permeation chromatography (GPC) and preparative isotachophoresis (ITP) is used. Palladium is determined in separated fractions by using a highly sensitive total reflection X-ray fluorescence (TXRF) method after preconcentration. After GPC separation, four main fractions of palladium species are collected, each containing palladium in ng quantities (3-10 ng). Two of these fractions are further separated by ITP, yielding at least three main peaks per GPC fraction, each containing palladium in the range of 0.3-3 ng. These palladium containing peaks are characterized by high-performance size exclusion chromatography (HPSEC) and capillary isotachophoresis (cITP) in parallel. HPSEC enables the estimation of the molecular mass of six main palladium peaks, covering a molecular mass range of 69-200 kDa. It is also shown that the estimation of molecular mass after separation is more reliable than the respective estimation directly in the first GPC run. However, cITP reveals that each of the separated peaks is still a mixture of at least five different compounds.  相似文献   

4.
A new capillary electrophoresis procedure based on micellar electrokinetic capillary chromatography for the separation of humic acids (HAs) isolated from Antarctica soil was developed. The HAs were separated and characterized using a background electrolyte containing 0.09 M borate+0.09 M Tris+0.001 M EDTA (BTE) of pH 8.3, modified with alpha-, beta-, or gamma-cyclodextrins (CDs) and sodium dodecyl sulfate. It was found that from alkaline solution of HAs in the presence of CDs, the HAs are not completely precipitated with a strong acid and a certain part (some fractions) remains soluble. Mass spectrometry shows that HAs contain 15-25 simple low-Mr compounds and several families of compounds with similar structure (m/z approximately 800-1200). Comparison of HA analysis from Antarctica soil with those of soil HAs from the American continent show a high similarity between the samples and confirm several identical compounds and some with very similar structural units.  相似文献   

5.
A high-performance size-exclusion chromatography (HPSEC) method was developed for the separation of porcine colonic mucins using a Bio-Gel TSK 40XL HPSEC column (300 mm x 75 mm). In addition, porcine gastric and bovine submaxillary mucin preparations were used to describe more fully the separation characteristics of the HPSEC column. For comparison, the same preparations were also separated using a Sepharose 4B column (100 cm x 2.6 cm). The colonic and gastric mucins eluted in the void volume (V0) of both columns. Bovine submaxillary mucin was in the elution volume (Ve) of both columns. Analytical HPSEC of fractions (V0 and Ve) of the various preparations obtained by Sepharose 4B chromatography exhibited retention times identical to those for fractions obtained by HPSEC. After separation by both methods, purified mucins were obtained by CsCl2 density gradient ultracentrifugation; analytical HPSEC profiles, protein contents, and monosaccharide compositions of both gastric and colonic mucins from either column were similar. The HPSEC method, however, is ideally suited to separate microgram to milligram quantities of colonic mucin preparations quickly: 2 to 4 h, compared with 24 to 30 h for the Sepharose 4B method.  相似文献   

6.
The colloidal behavior of aluminum oxide nanoparticles (NPs) was investigated as a function of pH and in the presence of two structurally different humic acids (HAs), Aldrich HA (AHA) and the seventh HA fraction extracted from Amherst peat soil (HA7). Dynamic light scattering (DLS) and atomic force microscopy (AFM) were employed to determine the colloidal behavior of the NPs. Influence of pH and HAs on the surface charges of the NPs was determined. zeta-Potential data clearly showed that the surface charge of the NPs decreased with increasing pH and reached the point of zero charge (ZPC) at pH 7.9. Surface charge of the NPs also decreased with the addition of HAs. The NPs tend to aggregate as the pH of the suspension approaches ZPC, where van der Waals attraction forces dominate over electrostatic repulsion. However, the NP colloidal suspension was stable in the pHs far from ZPC. Colloidal stability was strongly enhanced in the presence of HAs at the pH of ZPC or above it, but in acidic conditions NPs showed strong aggregation in the presence of HAs. AFM imaging revealed the presence of long-chain fractions in HA7, which entangled with the NPs to form large aggregates. The association of HA with the NP surface can be assumed to follow a two-step process, possibly the polar fractions of the HA7 sorbed on the NP surface followed by entanglement with the long-chain fractions. Thus, our study demonstrated that the hydrophobic nature of the HA molecules strongly influenced the aggregation of colloidal NPs, possibly through their conformational behavior in a particular solution condition. Therefore, various organic matter samples will result in different colloidal behavior of NPs, subsequently their environmental fate and transport.  相似文献   

7.
The use of three different separation techniques, ultrafiltration (UF), high performance size exclusion chromatography (HPSEC) and asymmetrical flow field-flow fractionation (AsFlFFF), for the characterization of a compost leachate is described. The possible interaction of about 30 elements with different size fractions of humic substances (HS) has been investigated coupling these separation techniques with UV-vis absorption spectrophotometry and inductively coupled plasma-mass spectrometry (ICP-MS) as detection techniques. The organic matter is constituted by a polydisperse mixture of humic substances ranging from low molecular weights (around 1kDa) to significantly larger entities. Elements can be classified into three main groups with regard to their interaction with HS. The first group is constituted by primarily the monovalent alkaline metal ions and anionic species like B, W, Mo, As existing as oxyanions all being not significantly associated to HS. The second group consists of elements that are at least partly associated to a smaller HS size fraction (such as Ni, Cu, Cr and Co). A third group of mainly tri- and tetravalent metal ions like Al, Fe, the lanthanides, Sn and Th are rather associated to larger-sized HS fractions. The three separation techniques provide a fairly consistent size classification for most of the metal ions, even though slight disagreements were observed. The number-average molecular weight (Mn), the weight-average molecular weight (Mw) and the polydispersity (rho) parameters have been calculated both from AsFlFFF and HPSEC experiments and compared for HS and some metal-HS species. Differences in values can be partly explained by an overloading effect observed in the AsFlFFF experiments induced by electrostatic repulsion effects in the low ionic strength, high pH carrier solution. Size information obtained from ultrafiltration is not as resolved as for the other methods. Molecular weight cut-offs (MWCO) of the individual filter membranes refer to globular proteins and molecular weight information may therefore, deviate from that given by the other methods after calibration with polystyrene sulfonate (PSS) standards.  相似文献   

8.
戴军  尹鸿萍  陈尚卫  朱松  顾小红  王旻  汤坚 《色谱》2006,24(6):560-565
通过对从杜氏盐藻中提取出的不同多糖级分在高效体积排阻色谱柱(Waters Ultrahydragel Linear,7.8 mm i.d.×300 mm,2根串联)上的保留特性的考察及其分离分析条件的优化,建立了高效体积排阻色谱分析盐藻多糖平均相对分子质量及其分布的方法。结果表明:流动相中盐的种类及其浓度、pH值对3种酸性多糖级分(特别是硫酸化多糖级分PD4a)的保留行为有显著影响;在柱温为45 ℃,流速为0.9 mL/min条件下,使用0.1 mol/L的NaAc水溶液作流动相基本上能消除非特异性吸附作用及分子间缔合等因素的干扰,使各多糖级分基本以非缔合状态按立体排除机制保留和分离。在优化的色谱条件下,测得的盐藻多糖5个级分的重均相对分子质量(Mw)分别为1548000,33000,67000,424000,10000;测得的硫酸化多糖级分PD4a的Mw和峰面积的相对标准偏差分别为1.7%和 0.88%(n=5)。  相似文献   

9.
Barron L  Paull B 《Talanta》2006,69(3):621-630
A new analytical procedure for the simultaneous determination of trace oxyhalides and haloacetic acids (HAs) in drinking water and aqueous soil extracts is described. The method uses micro-bore ion chromatography (IC) coupled with suppressed conductivity (SC) and electrospray ionization mass spectrometric detection (ESI-MS). The IC-SC-ESI-MS system included a secondary flow of 100% MeOH, which was added to the column eluate (post-suppressor) and resulted in a significant increase in sensitivity for all analytes. All ESI-MS parameters were optimized for HA analysis and sensitivity quantitatively compared to suppressed conductivity. Full analytical performance characteristics for the developed method are presented for monochloro-, monobromo-, dichloro-, dibromo-, trichloro-, bromochloro, chlorodifluoro-, trifluoro-, dichlorobromo- and dibromochloroacetic acid, as well as the oxyhalides iodate, bromate, chlorate and perchlorate. In the case of the HAs, an optimised 25-fold SPE preconcentration method meant all analytes could be readily detected well below the USEPA 60 μg/L regulatory limit using conductivity and/or ESI-MS. The IC-ESI-MS method was applied to the determination of oxyhalides and HAs in both soil extracts and drinking water samples. Soil samples were extracted using ultra pure water with subsequent determination of perchlorate at 1.68 μg/g of soil. A drinking water sample containing HAs was preconcentrated using LiChrolut EN solid phase extraction cartridges with subsequent sulphate and chloride removal. Total HAs were determined at 13 μg/L.  相似文献   

10.
Fluorescence spectroscopy has been used to probe the structural properties and Cu(II), Zn(II), Cd(II), and Pb(II)-binding behavior of humic acid (HA)-like fractions isolated from a municipal solid waste compost (MSWC) and HAs from unamended and MSWC-amended soils. The main feature of the fluorescence spectra, in the form of emission-excitation matrix (EEM) plots, was a broad peak with the maximum centered at an excitation/emission wavelength pair that was much shorter (340/437 nm) for MSWC-HA than for unamended and MSWC-amended soil HAs (455/513 and 455/512 nm, respectively). Fluorescence intensity for MSWC-amended soil HA was less than that for unamended soil HA. These results were indicative of more aromatic ring polycondensation and humification of soil HAs, and of partial incorporation of simple and low-humified components of MSWC-HA into native soil HA, as a result of MSWC amendment. Titrations of HAs with Cu(II), Zn(II), Cd(II), and Pb(II) ions at pH 6 and ionic strength 0.1 mol L−1 resulted in a marked decrease of the fluorescence intensities of untreated HAs. By successfully fitting a single-site fluorescence-quenching model to titration data, the metal ion complexing capacities of each HA and the stability constants of metal ion-HA complexes were obtained. The binding capacities and stability constants of MSWC-HA were smaller than those of the unamended soil HA. Application of MSWC to soil slightly reduced the metal-ion-binding capacities and affinities of soil HAs.  相似文献   

11.
The difficulty of preparing monodisperse lignin fractions on a large scale is a limiting factor in many applications. The present paper addresses this problem by examining the properties and size-exclusion behavior of lignin isolated by the acetosolv pulping process from post-extraction crushed sugarcane bagasse. The isolated lignin was subjected to a solvent pretreatment, followed by preparative gel permeation chromatography fractionation. The fractions were analyzed by high-performance size-exclusion chromatography (HPSEC) and these samples showed a great decrease in polydispersity, compared to the original acetosolv lignin. Several fractions of very low polydispersity, close to unity, were employed as calibration curve standards in HPSEC analysis. This original analytical approach allowed calibration with these lignin fractions to be compared with the polystyrene standards that are universally employed for lignin molecular mass determination. This led to a noteworthy result, namely that the lignin fractions and polystyrene standards showed very similar behavior over a large range of molecular masses in a typical HPSEC analysis of acetosolv lignin.  相似文献   

12.
Capillary zone electrophoresis (CZE) was used for characterisation of soil humic acid (HA) fractions obtained by coupling size-exclusion chromatography with polyacrylamide gel electrophoresis, on the basis of their molecular size and electrophoretic mobility. CZE was conducted using several low alkaline buffers as background electrolyte (BGE): 50 mM carbonate, pH 9.0; 50 mM phosphate, pH 8.5; 50 mM borate, pH 8.3; 50 mM Tris-borate+1 mM EDTA+7 M urea+0.1% sodium dodecyl sulphate (SDS), pH 8.3. Independently of BGE conditions, the effective electrophoretic mobility of HA fractions were in good agreement with their molecular size. The better resolution of HA were obtained in Tris-borate-EDTA buffer with urea and SDS. This results indicated that CZE, mostly with BGE-contained disaggregating agents, is useful for separating HAs in fractions with different molecular sizes.  相似文献   

13.
An HPLC method employing an ion exclusion column was developed for the determination of low molecular weight organic acids in soil solution. The method includes extensive sample pretreatment using ultrafiltration and cation exchange. The method showed linear calibration graphs (r>0.99) and the limits of detection in the range 0.1-26 muM. The recovery of eleven added acids ranged from 89 to 102%. Soil solutions of five horizons of a podzolised soil were analysed. The results showed that these compounds made up 1-3% of the dissolved organic carbon and 0-14% of the acidity. Identification of the major acids was also carried out by capillary zone electrophoresis.  相似文献   

14.
The main goal of this work was to study the structural transformation of humic acids (HAs) under the influence of selected strains of fungi (Aspergillus niger and Paecilomyces lilacinus) and bacteria (Bacillus sp., Paenibacillus polymyxa and Bacillus amyloliquefaciens) with/without the presence of NPK fertilizers. Two-year experiments were conducted on two different soils and HAs isolated from these soils were examined for structure, humification degree, and quantity using fluorescence and UV-Vis spectroscopy, elemental analysis, and extraction methods. Results showed that the applied additives contributed to the beneficial transformation of HAs, but effects differed for various soils. HAs from silty soil with higher organic carbon content showed simplification of their structure, and decreases in humification, molecular weight, and aromaticity under the influence of fungi and bacteria without NPK, and with NPK alone. With both fungi and NPK, increases in O/H and O/C atomic ratios indicated an increase in the number of O-containing functional groups. HAs from sandy soil did not show as many significant changes as did those from silty soil. Sandy soil exhibited a strong decline in HA content in the second year that was reduced/neutralized by the presence of fungi, bacteria, and NPK. Periodically observed fluorescence at ~300 nm/450 nm reflected formation of low-molecular HAs originating from the activity of microorganisms.  相似文献   

15.
In the present study, a simple procedure for the isolation by solid-phase extraction (SPE) and quantification by UV-Vis spectrometry (400 nm) of the humic acids (HAs) in the natural waters was developed. Seven different sorbents: Porapak P (polystyrene-divinylbenzene copolymer), Florisil (chemical composition: 84.0% SiO2, 15.5% MgO and 0.5% Na2SO4), Silica gel C18 (octadecyl silane), Strata X (surface modified polystyrene-divinylbenzene), Strata NH2 (silica-based trifunctional amino ligand), Strata SAX (silica-based trifunctional quaternary amine) and Strata C18-E (silica-based trifunctional C18 with hydrophobic end-capping of silanols) were tested. The HAs, adsorbed on SPE cartridges, were eluted using: NaOH (0.1 M), sodium dodecyl sulphate (SDS) (20 g L−1), and a 1:1 v/v mixture of SDS (20 g L−1) and NaOH (0.1 M). The extraction efficiency was evaluated by comparing the HAs recovery levels. The repeatability of results was estimated by the relative standard deviation (RSD). The data confirmed that Porapak P, Silica gel C18, Florisil, Strata NH2 and Strata X could be good alternatives for the traditional isolation of the aquatic HAs with XAD resin. The proposed method was applied for the determination of HAs in some waters sampled from the Western Romanian Plain. The content of HAs was correlated with the arsenic concentration and total organic carbon (TOC) level.   相似文献   

16.
Ultrafiltration fractions of three soil humic acids were characterized by viscometry and high performance size-exclusion chromatography (HPSEC) in order to estimate shapes and hydrodynamic sizes. Intrinsic viscosities under given solute/solvent/temperature conditions were obtained by extrapolating the concentration dependence of reduced viscosities to zero concentration. Molecular mass (weight average molecular weight (M (w)) and number average molecular weight (M (n))) and hydrodynamic radius (R(H)) were determined by HPSEC using pullulan as calibrant. Values of M (w) and M (n) ranged from 15 to 118 x 10(3) and from 9 to 50 x 10(3) (g mol(-1)), respectively. Polydispersity, as indicated by M (w)/M (n), increased with increasing filter size from 1.5 to 2.4. The hydrodynamic radii (R(H)) ranged between 2.2 and 6.4 nm. For each humic acid, M (w) and [eta] were related. Mark-Houwink coefficients calculated on the basis of the M (w)-[eta] relationships suggested restricted flexible chains for two of the humic acids and a branched structure for the third humic acid. Those structures probably behave as hydrated sphere colloids in a good solvent. Hydrodynamic radii of fractions calculated from [eta] using Einstein's equation, which is applicable to hydrated sphere colloids, ranged from 2.2 to 7.1 nm. These dimensions are fit to the size of nanospaces on and between clay minerals and micropores in soil particle aggregates. On the other hand, the good agreement of R(H) values obtained by applying Einstein's equation with those directly determined by HPSEC suggests that pullulan is a suitable calibrant for estimation of molecular mass and size of humic acids by HPSEC.  相似文献   

17.
A sensitive high-performance size-exclusion chromatography (HPSEC) method with simple UV detection was developed for the molecular mass analysis of sodium alginate. It was used to evaluate alginates of varying molecular mass and the results were compared with the viscosity measurements. This HPSEC method was sensitive to serve as the stability indicating method for alginate after storage under different conditions. The information of relative molecular mass distribution of alginate was provided with reference to pullulan molecular mass standards. The comparison of the HPSEC chromatograms of alginate, pullulan and dextran revealed the effect of chemical composition of a polysaccharide and its effect on apparent molecular mass distribution.  相似文献   

18.
In three soils typical for Northern Germany including Eutric Cambisol, Orthic Podsol and Eutric Histosol (Food and Agriculture Organization nomenclature), distributions of 90Sr, 134Cs, 137Cs and 239Pu + 240Pu in the soil profiles were determined. Sampling was performed more than 3 years after deposition of Chernobyl fallout nuclides. Migration rates calculated with a compartmental model showed no significant differences between Cs originating from either atomic weapons or Chernobyl fallout. This result indicates that Chernobyl Cs may have reached sorption equilibrium with the soil matrix 3 years after the accident. Both the compartmental model and the dispersion equation reproduce distributions of most of the activities, but fail to reproduce some (minor) activity fractions that show increased mobility.  相似文献   

19.
An efficient extraction of sulfadiazine residues from soils is difficult, as sulfadiazine is known to form quickly sequestering residues. The objective of this study was to optimize an exhaustive extraction for aged residues of sulfadiazine and its two major metabolites, N-acetylsulfadiazine and 4-hydroxysulfadiazine, from soil. For this purpose two representative used agricultural soils (Luvisol, Cambisol) were blended with manure derived from [14C]sulfadiazine-treated pigs and incubated at 10 °C in the laboratory. After different extraction tests with various solvent mixtures (two- to four-component mixtures with water, methanol, acetonitrile, acetone, and/or ethyl acetate), different pH values (pH 4 and 9), and extraction temperatures (up to 200 °C), soil extracts were measured by liquid scintillation counting and liquid chromatography coupled to tandem mass spectrometry. With respect to sulfadiazine yields, stability of soil extracts, and the amount of coextracted matrix, a microwave extraction of soil (15 min, 150 °C) using acetonitrile/water 1:4 (v/v) is the method of choice for the exhaustive extraction of aged sulfadiazine residues from soils.  相似文献   

20.
Polyacrylamide gel electrophoresis of chernozem soil humic acids (HAs) followed by observation under UV (312 nm) excitation light reveals new low molecular weight (MW) fluorescent fractions. Ultrafiltration of HAs sample in 7 M urea on a membrane of low nominal MW retention (NMWR, 5 kDa) was repetitively used for separation of fluorescent and non-fluorescent species. Thirty ultrafiltrates and the final retentate R were obtained. Fluorescence maxima of separate ultrafiltrates were different and non-monotonously changed in the range of 475–505 nm. Fluorescence maxima of less than 490 nm were detected only in the four first utrafiltrates. For further physical–chemical analyses all utrafiltrates were combined into a fraction called UF < 5 (NMW < 5 kDa). Retentate R demonstrated very weak fluorescence under 270 nm excitation, while fluorescence intensity of UF < 5 was about six times higher than of the bulk HAs. Fraction UF < 5 was further ultrafiltrated on membranes of MNWR 3 kDa and 1 kDa, yielding three subfractions UF3-5, UF1-3 and UF < 1 with NMW 3–5 kDa, 1–3 kDa and <1 kDa, respectively. The validation of the UF procedure was performed by size exclusion chromatography on Sephadex G-25 column. The fluorescence maxima were found to be at 505, 488 and 465 nm for UF3-5, UF1-3 and UF < 1, respectively, with increasing of fluorescence intensity from UF3-5 to UF1-3 to UF < 1 fraction. EPR analysis showed that the amount of free radicals was the largest in retentate R and drastically decreased in fluorescent ultrafiltrates. The results demonstrate that more than one fluorophore is present in chernozem soil HAs complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号