首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A variational formulation is provided for the modified couple stress theory of Yang et al. by using the principle of minimum total potential energy. This leads to the simultaneous determination of the equilibrium equations and the boundary conditions, thereby complementing the original work of Yang et al. where the boundary conditions were not derived. Also, the displacement form of the modified couple stress theory, which is desired for solving many problems, is obtained to supplement the existing stress-based formulation. All equations/expressions are presented in tensorial forms that are coordinate-invariant. As a direct application of the newly obtained displacement form of the theory, a simple shear problem is analytically solved. The solution contains a material length scale parameter and can capture the boundary layer effect, which differs from that based on classical elasticity. The numerical results reveal that the length scale parameter (related to material microstructures) can have a significant effect on material responses.   相似文献   

2.
A variational formulation is provided for the modified couple stress theory of Yang et al. by using the principle of minimum total potential energy. This leads to the simultaneous determination of the equilibrium equations and the boundary conditions, thereby complementing the original work of Yang et al. where the boundary conditions were not derived. Also, the displacement form of the modified couple stress theory, which is desired for solving many problems, is obtained to supplement the existing stress-based formulation. All equations/expressions are presented in tensorial forms that are coordinate-invariant. As a direct application of the newly obtained displacement form of the theory, a simple shear problem is analytically solved. The solution contains a material length scale parameter and can capture the boundary layer effect, which differs from that based on classical elasticity. The numerical results reveal that the length scale parameter (related to material microstructures) can have a significant effect on material responses.  相似文献   

3.
Buckling analysis of functionally graded micro beams based on modified couple stress theory is presented. Three different beam theories, i.e. classical, first and third order shear deformation beam theories, are considered to study the effect of shear deformations. To present a profound insight on the effect of boundary conditions, beams with hinged-hinged, clamped–clamped and clamped–hinged ends are studied. Governing equations and boundary conditions are derived using principle of minimum potential energy. Afterwards, generalized differential quadrature (GDQ) method is applied to solve the obtained differential equations. Some numerical results are presented to study the effects of material length scale parameter, beam thickness, Poisson ratio and power index of material distribution on size dependent buckling load. It is observed that buckling loads predicted by modified couple stress theory deviates significantly from classical ones, especially for thin beams. It is shown that size dependency of FG micro beams differs from isotropic homogeneous micro beams as it is a function of power index of material distribution. In addition, the general trend of buckling load with respect to Poisson ratio predicted by the present model differs from classical one.  相似文献   

4.
This paper addresses a 3D elasticity analytical solution for static deformation of a simply-supported rectangular micro/nanoplate made of both homogeneous and functionally graded (FG) material within the framework of modified couple stress theory. The plate is assumed to be resting on a Winkler–Pasternak elastic foundation, and its modulus of elasticity is assumed to vary exponentially along thickness. By expanding displacement components in double Fourier series along in-plane coordinates and imposing relevant boundary conditions, the boundary value problem (BVP) of plate system, including its governing partial differential equations (PDEs) of equilibrium are reduced to BVP consisting only ordinary ones (ODEs). Parametric studies are conducted among displacement and stress components developed in the plate and FG material gradient index, length scale parameter, and foundation stiffnesses. From the numerical results, it is concluded that the out-of-plane shear stresses are not necessarily zero at the top and bottom surfaces of plate. The results of this investigation may serve as a benchmark to verify further bending analyses of either homogeneous or FG micro/nanoplates on elastic foundation.  相似文献   

5.
基于修正的偶应力理论与四参数高阶剪切-法向伸缩变形理论,提出了一种具有尺度依赖性的准三维功能梯度微梁模型,并应用于小尺度功能梯度梁的静力弯曲和自由振动分析中.采用第二类Lagrange方程,推导了微梁的运动微分方程及边界条件.针对一般边值问题,构造了一种融合Gauss-Lobatto求积准则与微分求积准则的2节点16自由度微分求积有限元.通过对比性研究,验证了理论模型以及求解方法的有效性.最后,探究了梯度指数、内禀特征长度、几何参数及边界条件对微梁静态响应与振动特性的影响.结果表明,该文所发展的梁模型及微分求积有限元适用于研究各种长细比的功能梯度微梁的静/动力学问题,引入尺度效应会显著地改变微梁的力学特性.  相似文献   

6.
This paper aims to investigate the coupling influences of thermal loading and surface effects on pull-in instability of electrically actuated circular nanoplate based on Eringen's nonlocal elasticity theory, where the electrostatic force and thermally corrected Casimir force are considered. By utilizing the Kirchhoff plate theory, the nonlinear equilibrium equation of axisymmetric circular nanoplate with variable coefficients and clamped boundary conditions is derived and analytically solved. The results describe the influences of surface effect and thermal loading on pull-in displacements and pull-in voltages of nanoplate under thermal corrected Casimir force. It is seen that the surface effect becomes significant at the pull-in state with the decrease of nanoplate thicknesses, and the residual surface tension exerts a greater influence on the pull-in behavior compared to the surface elastic modulus. In addition, it is found that temperature change plays a great role in the pull-in phenomenon; when the temperature change grows, the circular nanoplate without applied voltage is also led to collapse.  相似文献   

7.
Cylindrical bending is studied by developing a new zigzag theory which relaxes the zero transverse shear stress condition on the outer surfaces of the panels subjected to transversely applied electromechanical load. The mechanical portion of the transverse displacement approximation in this new shear deformation theory is considered constant as well as non-constant through the development of three models. Unlike the existing zigzag theories which enforce the condition of vanishing transverse shear stresses on outer surfaces of laminates, these new theories relax it. Though the number of primary mechanical variables get increased by four or five or six, the computational cost does not increase appreciably. Approximating the electric potential in each piezoelectric layer as sublayerswise linear, variational principle is applied in deriving equilibrium equations and boundary conditions. Accuracy of the new base model as well as two augmented models is assessed by comparing with elasticity and piezoelasticity solutions. While it is observed that the new base model is highly accurate than the existing zigzag model, the two augmented models do not aid in its further improvement. This is attributed to the fact that layerwise consideration of the transverse displacement, not global consideration, is needed to correctly establish the effect of transverse normal deformation in the laminated composite and smart panel.  相似文献   

8.
This paper studied compressive postbuckling under thermal environments and thermal postbuckling due to a uniform temperature rise for a shear deformable laminated plate with piezoelectric fiber reinforced composite (PFRC) actuators based on a higher order shear deformation plate theory that includes thermo-piezoelectric effects. The material properties are assumed to be temperature-dependent and the initial geometric imperfection of the plate is considered. The compressive and thermal postbuckling behaviors of perfect, imperfect, symmetric cross-ply and antisymmetric angle-ply laminated plates with fully covered or embedded PFRC actuators are conducted under different sets of thermal and electric loading conditions. The results reveal that, the applied voltage usually has a small effect on the postbuckling load–deflection relationship of the plate with PFRC actuators in the compressive buckling case, whereas the effect of applied voltage is more pronounced for the plate with PFRC actuators, compared to the results of the same plate with monolithic piezoelectric actuators.  相似文献   

9.
In the present paper, a non-classical model for functionally graded annular sector microplates under distributed transverse loading is developed based on the modified couple stress theory and the first-order shear deformation plate theory. The model contains a single material length scale parameter which can capture the size effect. The material properties are graded through the thickness of plates according to a power-law distribution of the volume fraction of the constituents. The equilibrium equations and boundary conditions are simultaneously derived from the principle of minimum total potential energy. The system of equilibrium equations is then solved using the generalized differential quadrature method. The effects of length scale parameter, power-law index and geometrical parameters on the bending response of annular sector plates subjected to distributed transverse loading are investigated.  相似文献   

10.
A nonclassical nonlinear continuum model of electrically actuated viscoelastic microbeams is presented based on the modified couple stress theory to consider the microstructure effect in the framework of viscoelasticity. The nonlinear integral-differential governing equation and related boundary conditions of are derived based on the extended Hamilton's principle and Euler–Bernoulli hypothesis for viscoelastic microbeams with clamped-free, clamped-clamped, simply-supported boundary conditions. The proposed model accounts for system nonlinearities including the axial residual stress, geometric nonlinearity due to midplane stretching, electrical forcing with fringing effect. The behavior of the microbeam is simulated using generalized Maxwell viscoelastic model. A new generalized differential/integral quadrature method is developed to solve the resulting governing equation. The developed model is verified against elastic behavior and a favorable agreement is obtained. Efficiency of the developed model is demonstrated by analyzing the quasistatic pull-in phenomena of electrically actuated viscoelastic microbeams with different boundaries at various material length scale parameters and axial residual stresses in the framework of linear viscoelasticity.  相似文献   

11.
A modified couple stress theory and a meshless method is used to study the bending of simply supported micro isotropic plates according to the first-order shear deformation plate theory, also known as the Mindlin plate theory. The modified couples tress theory involves only one length scale parameter and thus simplifies the theory, since experimentally it is easier to determine the single scale parameter. The equations governing bending of the first-order shear deformation theory are implemented using a meshless method based on collocation with radial basis functions. The numerical method is easy to implement, and it provides accurate results that are in excellent agreement with the analytical solutions.  相似文献   

12.
This study investigates the small scale effect on the flapwise bending vibrations of a rotating nanoplate. The nanoplate is modeled with a classical plate theory and considering cantilever and propped cantilever boundary conditions. Due to the rotation, the axial forces are included in the model as true spatial variation. Hamilton's principle is used to derive the governing equation and boundary conditions of the classical plate theory based on Eringen's nonlocal elasticity theory. The generalized differential quadrature method is employed to solve the governing equation. The effect of small-scale parameter, non-dimensional angular velocity, non-dimensional hub radius, aspect ratio, and different boundary conditions in the first four non-dimensional frequencies is discussed. Due to considering rotating effects, results of this study are applicable in nano-machines such as nano-motors and nano-turbines and other nanostructures.  相似文献   

13.
《Applied Mathematical Modelling》2014,38(5-6):1881-1895
Size dependent behavior of materials arises for a structure when the characteristic size such as thickness or diameter is close to its internal length-scale parameter. In these cases, ignoring this behavior in modeling may leads to incorrect results. In this paper, strong effects of size dependence on static and dynamic behavior of electro-statically actuated nano-beams have been studied. The fixed points of the Aluminum nano-beams have been determined and shown that for a given DC voltage, there is a considerable difference between the calculated fixed points using classic beam theory and modified couple stress theory. In addition, it has been also shown that ignoring couple stress theory results in an order of magnitude error in calculated static and dynamic pull-in voltages. Some previous studies have applied the classic beam theory in their models and introduced a considerable hypothetical value of residual stress to justify the discrepancies between experimental and theoretical results.  相似文献   

14.
A variety of micro-scale experiments have demonstrated that the mechanical property of some metals and polymers on the order of micron scale are size dependence. Taking into account the size effect on the mechanical property of materials and the inherent nonlinear property of electrostatic force, the static pull-in behavior of an electrostatically actuated Bernoulli–Euler microbeam is analyzed on the basis of a modified couple stress theory. The approximate analytical solutions to the pull-in voltage and pull-in displacement of the microbeam are derived by using the Rayleigh–Ritz method. The results show that the normalized pull-in voltage of the microbeam increases by a factor of 3.1 as the microbeam thickness equals to the material length scale parameter and exhibits size effect remarkably. However, the size effect on the pull-in voltage is almost diminishing as the microbeam thickness is far greater than the material length scale parameter. The normalized pull-in displacement of the microbeam exhibits size independence and equals to 0.448 and 0.398 for the cantilever beam and clamped–clamped beam, respectively.  相似文献   

15.
The theoretical formulation for bending analysis of functionally graded (FG) rotating disks based on first order shear deformation theory (FSDT) is presented. The material properties of the disk are assumed to be graded in the radial direction by a power law distribution of volume fractions of the constituents. New set of equilibrium equations with small deflections are developed. A semi-analytical solution for displacement field is given under three types of boundary conditions applied for solid and annular disks. Results are verified with known results reported in the literature. Also, mechanical responses are compared between homogeneous and FG disks. It is found that the stress couple resultants in a FG solid disk are less than the stress resultants in full-ceramic and full-metal disk. It is observed that the vertical displacements for FG mounted disk with free condition at the outer surface do not occur between the vertical displacements of the full-metal and full-ceramic disk. More specifically, the vertical displacement in a FG mounted disk with free condition at the outer surface can even be greater than vertical displacement in a full-metal disk. It can be concluded from this work that the gradation of the constitutive components is a significant parameter that can influence the mechanical responses of FG disks.  相似文献   

16.
This paper addresses the elastic buckling and vibration characteristics of isotropic and orthotropic nanoplates using finite strip method. In order to consider small scale effect, Eringen’s nonlocal continuum elasticity is employed. The governing nanoplate equations are derived using the principle of virtual work while B3-spline finite strip method is applied to the buckling and vibration analyses. The buckling load and vibration frequency of graphene sheets, which are subjected to biaxial compression and pure shear loading, are determined whilst the effects of different parameters such as sheet size, nonlocal parameter, aspect ratio and boundary conditions are investigated. The interaction curves of the critical biaxial compression loading as well as the interaction curves of the critical uniaxial compression and shear loading are also obtained. It is shown that small scale effect plays considerable role in the analysis of small sizes plates.  相似文献   

17.
In this paper, buckling and free vibration behavior of a piezoelectric rotating cylindrical carbon nanotube-reinforced (CNTRC) shell is investigated. Both cases of uniform distribution (UD) and FG distribution patterns of reinforcements are studied. The accuracy of the presented model is verified with previous studies and also with those obtained by Navier analytical method. The novelty of this study is investigating the effects of critical voltage and CNT reinforcement as well as satisfying various boundary conditions implemented on the piezoelectric rotating cylindrical CNTRC shell. The governing equations and boundary conditions have been developed using Hamilton's principle and are solved with the aid of Navier and generalized differential quadrature (GDQ) methods. In this research, the buckling phenomena in the piezoelectric rotating cylindrical CNTRC shell occur as the natural frequency is equal to zero. The results show that, various types of CNT reinforcement, length to radius ratio, external voltage, angular velocity, initial hoop tension and boundary conditions play important roles on critical voltage and natural frequency of piezoelectric rotating cylindrical CNTRC shell.  相似文献   

18.
The main objective of this research work is to present analytical solutions for free vibration analysis of moderately thick rectangular plates, which are composed of functionally graded materials (FGMs) and supported by either Winkler or Pasternak elastic foundations. The proposed rectangular plates have two opposite edges simply-supported, while all possible combinations of free, simply-supported and clamped boundary conditions are applied to the other two edges. In order to capture fundamental frequencies of the functionally graded (FG) rectangular plates resting on elastic foundation, the analysis procedure is based on the first-order shear deformation plate theory (FSDT) to derive and solve exactly the equations of motion. The mechanical properties of the FG plates are assumed to vary continuously through the thickness of the plate and obey a power law distribution of the volume fraction of the constituents, whereas Poisson’s ratio is set to be constant. First, a new formula for the shear correction factors, used in the Mindlin plate theory, is obtained for FG plates. Then the excellent accuracy of the present analytical solutions is confirmed by making some comparisons of the results with those available in literature. The effect of foundation stiffness parameters on the free vibration of the FG plates, constrained by different combinations of classical boundary conditions, is also presented for various values of aspect ratios, gradient indices, and thickness to length ratios.  相似文献   

19.
This paper presents a non-polynomial coupled plate theory for smart composite structures employing inverse hyperbolic displacement and electric potential functions. The theory is utilized towards analysis of composite piezoelectric plates operating in sensor and actuator modes. Particularly, the following three cases are studied: (i) passive laminated composite structure, (ii) composite piezoelectric plate actuator and (iii) unimorph and bimorph piezoelectric plate sensors. Analytical solutions are obtained for simply supported plates under static electrical and mechanical loads. These results are validated with existing 3D elasticity solutions and compared with other plate theory solutions. Furthermore, parametric studies are performed to determine the effect of loading, span-to-thickness ratio and lamination sequence on the response of the piezoelectric plate. Finally, the theory is applied to a transverse shear sensing device which utilizes transverse shear-electric field coupling in piezoelectric materials. This effect is often ignored in literature.It is observed that the maximum percentage error of the present theory, when compared with 3D results, is less than 3%, which is lower than other higher order plate theories.  相似文献   

20.
For the first time in this paper, free vibration and thermal buckling of micro temperature-dependent FG porous circular plate subjected to a nonlinear thermal load are numerically studied. The governing equations are derived based on Hamilton's principal and using both classical and the first-order shear deformation theories in conjunction with the modified couple stress theory. Generalized Differential Quadrature method is applied to solve the equations with associated boundary conditions. The results reveal that the increase of size dependency and the temperature-change would lead to the increase of differences between the first natural frequencies predicted based on the two theories. In contrast, the porosity and the FG power index do have not any effect on that. While the effect of porosity on free vibration of clamped and free plates are negligible, but the effect of porosity for hinged ones is considerable as the temperature-change increase. Moreover, the critical conditions of the plates which are expressed by porosity, FG power index, size dependency, temperature-change and geometrical dimensions are presented, as well. Numerical results are in good agreement with those available in literature in some special cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号