首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
In this article, a computational model and related methodologies have been tested for simulating the motion of a malaria infected red blood cell (iRBC for short) in Poiseuille flow at low Reynolds numbers. Besides the deformability of the red blood cell membrane, the migration of a neutrally buoyant particle (used to model the malaria parasite inside the membrane) is another factor to determine the iRBC motion. Typically an iRBC oscillates in a Poiseuille flow due to the competition between these two factors. The interaction of an iRBC and several RBCs in a narrow channel shows that, at lower flow speed, the iRBC can be easily pushed toward the wall and stay there to block the channel. But, at higher flow speed, RBCs and iRBC stay in the central region of the channel since their migrations are dominated by the motion of the RBC membrane.  相似文献   

2.
The objective of this research is to develop new quantitative methods to describe the elastic properties (e.g., shear modulus, viscosity) of biological tissues such as cartilage. Cartilage is a connective tissue that provides the lining for most of the joints in the body. Tissue histology of cartilage reveals a multi-scale architecture that spans a wide range from individual collagen and proteoglycan molecules to families of twisted macromolecular fibers and fibrils, and finally to a network of cells and extracellular matrix that form layers in the connective tissue. The principal cells in cartilage are chondrocytes that function at the microscopic scale by creating nano-scale networks of proteins whose biomechanical properties are ultimately expressed at the macroscopic scale in the tissue’s viscoelasticity. The challenge for the bioengineer is to develop multi-scale modeling tools that predict the three-dimensional macro-scale mechanical performance of cartilage from micro-scale models. Magnetic resonance imaging (MRI) and MR elastography (MRE) provide a basis for developing such models based on the nondestructive biomechanical assessment of cartilage in vitro and in vivo. This approach, for example, uses MRI to visualize developing proto-cartilage structure, MRE to characterize the shear modulus of such structures, and fractional calculus to describe the dynamic behavior. Such models can be extended using hysteresis modeling to account for the non-linear nature of the tissue. These techniques extend the existing computational methods to predict stiffness and strength, to assess short versus long term load response, and to measure static versus dynamic response to mechanical loads over a wide range of frequencies (50–1500 Hz). In the future, such methods can perhaps be used to help identify early changes in regenerative connective tissue at the microscopic scale and to enable more effective diagnostic monitoring of the onset of disease.  相似文献   

3.
The problem of the effective elastic properties of regular composites with randomly perturbed geometric and mechanical parameters is formulated and solved numerically. Mean sample values and standard deviations of compliances are used to characterize the elastic properties. Compliance data are obtained by solving reduction problems for each of a set of realizations of random perturbations, and here the number of realizations is increased until the values of the statistical means become stable (within a given tolerance). Calculations for each realization are carried out by numerical solution of the complex hypersingular boundary integral equations obtained for a doubly periodic structure. The principal cell of this structure, containing a fairly large number of perturbed elements, is identified with a representative volume when a further increase in the number of perturbed elements do not alter the statistical means (again, within a given tolerance). Calculations are carried out for square and triangular grids with different densities of circular inclusions or holes, the centre coordinates of which are given random perturbations (weak, medium and strong). The results of the calculations are summed up in tables showing the effective compliances with an accuracy to at least three significant digits. An analysis of the values obtained for the holes shows’ that, with a tolerance of 5%, the principal cell of a square grid with four holes determines the representative volume for all the geometric parameter combinations investigated. For rigid inclusions this cell is the representative volume at a considerably greater tolerance than for compliant inclusions (4% as against 0.9%). Data on the effective properties of perturbed structures indicate that the difference between their compliance and that of the initial regular structures depends substantially on the relative stiffness of the inclusions. It is most marked for holes and rigid inclusions (9.5 and 12.6% respectively). It is established that, for a square grid, random perturbations have a stronger effect on the normal components of the compliance than on the shear component, and the opposite for a regular triangular grid – perturbations have a greater effect on the shear compliance. Calculations also show that symmetrical perturbations of holes (rigid inclusions) along one of the coordinates lead to a marked increase (reduction) in compliance in the orthogonal direction. The established dependence of the additional effective compliance on the amplitude of the perturbation enables the inverse problem to be solved: to find the parameters of the perturbed structure using data on its effective statistical properties.  相似文献   

4.
The paper presents Chebyshev series based analytical solutions for the postbuckling response of the moderately thick laminated composite rectangular plates with and without elastic foundations. The plate is assumed to be subjected to in-plane mechanical, thermal and thermomechanical loadings. In-plane mechanical loading consists of uniaxial, biaxial, shear loadings and their combinations. The temperature induced loading is due to either uniform temperature or a linearly varying temperature across the thickness. The mathematical formulation is based on higher order shear deformation theory (HSDT) and von-Karman nonlinear kinematics. The elastic foundation is modeled as shear deformable with cubic nonlinearity. The thermal and mechanical properties of the composites are assumed to be temperature dependent. The quadratic extrapolation technique is used for linearization and fast converging finite double Chebyshev series is used for spatial discretization of the governing nonlinear equations of equilibrium. The effects of plate parameters and foundation parameters on buckling and postbuckling response of the plate are presented.  相似文献   

5.
The deformation and strength properties of the wall of the human aorta have been studied after open endarterectomy. Specimens cut from the aorta wall and specimens subjected to endarterectomy at the levels of both the inner and outer elastic membranes were investigated. It was found that endarterectomy at the level of the inner elastic membrane does not affect the deformation properties of the wall but leads to an increase in strength as compared with the atherosclerotic wall. Endarterectomy at the level of the outer elastic membrane sharply reduces the deformability in the transverse direction as compared with the intact aorta.  相似文献   

6.
Buckling behaviors of elastoplastic ceramic/metallic functionally graded material (FGM) rings are investigated by using the first order shear deformation theory. The hydrostatic-pressured rings are assumed to be in both the plane-stress case and the plane-strain case, which lead respectively to a uniaxial and a biaxial elastoplastic stress states in prebuckling stage. A uniform strain hypothesis helps to deal with the elastoplastic stress states. By introducing in the graded material properties, the constitutive model of FGMs is formulated under the framework of J2 deformation theory. By considering the kinetic relations of von-Kárman type and employing the principle of virtual displacement, the equilibrium equations and the buckling governing equations of FGM circular rings are formulated, and the analytical solution of the anisotropic rings is obtained. Finally, the elastoplastic buckling problem is numerically solved through a semi-analytical method, which is proposed to seek the real circumferential strain of FGM rings at the buckling point and determinate the elastoplastic buckling critical hydrostatic pressure. The effects of the inhomogeneous and geometrical parameters on the buckling critical load and the position of the elastoplastic interface are discussed. Results show that, in both the plane-stress and the plane-strain cases, the elastoplastic critical loads are generally lower than their elastic counterparts due to material flow, and the plane-strain critical load is generally larger than the plane-stress one. The elastoplastic critical load does not always decrease monotonously with the increase of the inhomogeneous parameters, which is quite different from their elastic counterparts.  相似文献   

7.
The paper deals with Chebyshev series based analytical solution for the nonlinear flexural response of the elastically supported moderately thick laminated composite rectangular plates subjected to hygro-thermo-mechanical loading. The mathematical formulation is based on higher order shear deformation theory (HSDT) and von-Karman nonlinear kinematics. The elastic foundation is modeled as shear deformable with cubic nonlinearity. The elastic and hygrothermal properties of the fiber reinforced composite material are considered to be dependent on temperature and moisture concentration and have been evaluated utilizing micromechanics model. The quadratic extrapolation technique is used for linearization and fast converging finite double Chebyshev series is used for spatial discretization of the governing nonlinear equations of equilibrium. The effects of Winkler and Pasternak foundation parameters, temperature and moisture concentration on nonlinear flexural response of the laminated composite rectangular plate with different lamination scheme and boundary conditions are presented.  相似文献   

8.
Wide application of polymer composite materials (PCM) in modern technology calls for detailed evaluation of their stress-strain properties in a broad temperature range. To obtain such information, we use the dynamic mechanical analysis and with the help of a reverse torsion pendulum measure the dynamic torsional rigidity of PCM bars of rectangular cross section in the temperature range up to 600 K. It is found that the temperature dependences of the dynamic rigidity of the calculated values of dynamic shear moduli are governed by the percentage and properties of the binder and fibers, the layout of fibers, the phase interaction along interfaces, etc. The principles of dynamic mechanical spectrometry are used to substantiate and analyze the parameters of anisotropy by which the behavior of a composite can be described in the temperature range including the transition of the binder from the glassy into a highly elastic state. For this purpose, the values of dynamic rigidity are measured under low-amplitude vibrations of the PCM specimens with a fiber orientation angle from 0 to 90°. It is shown that for unidirectional composites the dependence between the dynamic rigidity and the fiber orientation angle is of extreme character. The value and position of the peak depend on the type of the binder and fibers and change with temperature. It is found that the anisotropy degree of PCM is dictated by the molecular mobility and significantly changes in the temperature range of transition of the binder and reinforcement from the glassy into a highly elastic state (in the case of SVM fibers). The possibility of evaluating the anisotropy of composites with other reinforcement schemes, in particular, of orthogonally reinforced PCMs, is shown.Translated from Mekhanika Kompozitnykh Materialov, Vol. 35, No. 3, pp. 291–308, May–June, 1999.  相似文献   

9.
The second order statistics in terms of mean and standard deviation (SD) of normalized nonlinear transverse dynamic central deflection (NTDCD) response of un-damped elastically supported functionally graded materials (FGMs) beam with surface-bonded piezoelectric layers under the action of moving load are investigated in this paper. The random system properties such as Young's modulus, Poisson's ratio, density, thermal expansion coefficients, piezoelectric materials, volume fraction exponent and external loading are modeled as uncorrelated random variables. The basic formulation is based on higher order shear deformation theory (HSDT) with von-Karman nonlinear strain kinematics combined with Newton–Raphson technique through Newmark's time integrating scheme using finite element method (FEM). The non-uniform temperature distribution with temperature dependent material properties is taken into consideration for consideration of thermal loading. The one parameter Pasternak elastic foundation with Winkler cubic nonlinearity is considered as an elastic foundation. The stochastic based second order perturbation technique (SOPT) and direct Monte Carlo simulation (MCS) are adopted for the solution of nonlinear dynamic governing equation. The influences of volume fraction exponents, temperature increments, moving loads and velocity, nonlinearity, slenderness ratios, foundation parameters and external loadings with random system properties on the NTDCD are examined. The capability of present stochastic model in predicting the NTDCD statistics are compared by studying their convergence with the existing results those available in the literature.  相似文献   

10.
In this paper the boundary layer flow over a flat plat with slip flow and constant heat flux surface condition is studied. Because the plate surface temperature varies along the x direction, the momentum and energy equations are coupled due to the presence of the temperature gradient along the plate surface. This coupling, which is due to the presence of the thermal jump term in Maxwell slip condition, renders the momentum and energy equations non-similar. As a preliminary study, this paper ignores this coupling due to thermal jump condition so that the self-similar nature of the equations is preserved. Even this fundamental problem for the case of a constant heat flux boundary condition has remained unexplored in the literature. It was therefore chosen for study in this paper. For the hydrodynamic boundary layer, velocity and shear stress distributions are presented for a range of values of the parameter characterizing the slip flow. This slip parameter is a function of the local Reynolds number, the local Knudsen number, and the tangential momentum accommodation coefficient representing the fraction of the molecules reflected diffusively at the surface. As the slip parameter increases, the slip velocity increases and the wall shear stress decreases. These results confirm the conclusions reached in other recent studies. The energy equation is solved to determine the temperature distribution in the thermal boundary layer for a range of values for both the slip parameter as well as the fluid Prandtl number. The increase in Prandtl number and/or the slip parameter reduces the dimensionless surface temperature. The actual surface temperature at any location of x is a function of the local Knudsen number, the local Reynolds number, the momentum accommodation coefficient, Prandtl number, other flow properties, and the applied heat flux.  相似文献   

11.
A combined immersed boundary–lattice Boltzmann approach is used to simulate the dynamics of elastic membrane immersed in a viscous incompressible flow. The lattice Boltzmann method is utilized to solve the flow field on a regular Eulerian grid, while the immersed boundary method is employed to incorporate the fluid–membrane interaction with a Lagrangian representation of the deformable immersed boundary. The distinct feature of the method used here is to employ the combination of simple Peskin's IBM and standard LBM. In order to obtain more accurate and truthful solutions, however, a non-uniform distribution of Lagrangian points and a modified Dirac delta function are used. Two test cases are presented. In the first case, we consider a vesicle suspended in a simple shear flow commonly known as tank-treading motion. The computed results were compared with experiments, which showed reasonably good agreement. For the second test case, we consider individual healthy (soft) and sick (stiff) RBCs suspended in a shear flow. The simulation results demonstrated that elastic deformation plays an important role in overall RBC motions characterized as tank-treading and tumbling motions, in which the natural state of the elastic membrane is an essential consideration. In addition, the results confirm that the combination of the immersed boundary and lattice Boltzmann methods permits the simulation of the complex biological phenomena.  相似文献   

12.
A method is proposed for studying the dynamic strength of block polymers in terms of their resistance to impact shear. An original instrument for conducting tests are room and elevated temperatures is described. The results obtained with this instrument for alkathene and styrene carylonitrile copolymer are discussed. It is found that there is a considerable increase in specific shear energy in the region of transition from the glassy to the high elastic state. In the case of alkathene the investigated characteristic falls linearly on the temperature interval studied.Leningrad Kirov Institute of the Textile and Light Industries. Translated from Mekhanika Polimerov, Vol. 4, No. 6, pp. 1135–1137, November–December, 1968.  相似文献   

13.
This paper presents an investigation on partially fluid-filled cylindrical shells made of functionally graded materials (FGM) surrounded by elastic foundations (Pasternak elastic foundation) in thermal environment. Material properties are assumed to be temperature dependent and radially variable in terms of volume fraction of ceramic and metal according to a simple power law distribution. The shells are reinforced by stiffeners attached to their inside and outside in which the material properties of shell and the stiffeners are assumed to be continuously graded in the thickness direction. The formulations are derived based on smeared stiffeners technique and classical shell theory using higher-order shear deformation theory which accounts for shear flexibility through shell's thickness. Displacements and rotations of the shell middle surface are approximated by combining polynomial functions in the meridian direction and truncated Fourier series with an appropriate number of harmonic terms in the circumferential direction. The governing equations of liquid motion are derived using a finite strip element formulation of incompressible inviscid potential flow. The dynamic pressure of the fluid is expanded as a power series in the radial direction. Moreover, the quiescent liquid free surface is modeled by concentric annular rings. A detailed numerical study is carried out to investigate the effects of power-law index of functional graded material, fluid depth, stiffeners, boundary conditions, temperature and geometry of the shell on the natural frequency of eccentrically stiffened functionally graded shell surrounded by Pasternak foundations.  相似文献   

14.
The static response of simply supported functionally graded plates (FGP) subjected to a transverse uniform load (UL) or a sinusoidally distributed load (SL) and resting on an elastic foundation is examined by using a new hyperbolic displacement model. The present theory exactly satisfies the stress boundary conditions on the top and bottom surfaces of the plate. No transverse shear correction factors are needed, because a correct representation of the transverse shear strain is given. The material properties of the plate are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of volume fractions of material constituents. The foundation is modeled as a two-parameter Pasternak-type foundation, or as a Winkler-type one if the second parameter is zero. The equilibrium equations of a functionally graded plate are given based on the hyperbolic shear deformation theory of plates presented. The effects of stiffness and gradient index of the foundation on the mechanical responses of the plates are discussed. It is established that the elastic foundations significantly affect the mechanical behavior of thick functionally graded plates. The numerical results presented in the paper can serve as benchmarks for future analyses of thick functionally graded plates on elastic foundations.  相似文献   

15.
Ethylene-propylene copolymer, a typical stereo rubber, has been investigated by capillary viscometry. Ethylene-propylene copolymer possesses high thermooxidative stability, which has made it possible to study its viscosity properties, determine the onset of elastic turbulence and boundary slip, and measure the slip rate over a very broad temperature interval, from room temperature to 260° C. The flow of elastomers differs from that of thermoplastics in that at relatively low strain rates flow is complicated by the boundary slip effect. The mean boundary slip velocities of the copolymer at shear stresses above 106 dynes/cm2 are measured in tens of centimeters per second. As the temperature rises, they rapidly increase.Mekhanika Polimerov, Vol. 4, No. 2, pp. 336–342, 1968  相似文献   

16.
This work addresses a static analysis of functionally graded material (FGM) plates using higher order shear deformation theory. In the theory the transverse shear stresses are represented as quadratic through the thickness and hence it requires no shear correction factor. The material property gradient is assumed to vary in the thickness direction. Mori and Tanaka theory (1973) [1] is used to represent the material property of FGM plate at any point. The thermal gradient across the plate thickness is represented accurately by utilizing the thermal properties of the constituent materials. Results have been obtained by employing a C° continuous isoparametric Lagrangian finite element with seven degrees of freedom for each node. The convergence and comparison studies are presented and effects of the different material composition and the plate geometry (side-thickness, side–side) on deflection and temperature are investigated. Effect of skew angle on deflection and axial stress of the plate is also studied. Effects of material constant n on deflection and the temperature distribution are also discussed in detail.  相似文献   

17.
In this paper the method of conditional moments is developed for the case of a two–component matrix composite with randomly distributed unidirectional and arbitrarily oriented ellipsoidal inclusions. The algorithm for determination of the effective elastic properties of composites from the given elastic constants of the components and geometrical parameters and orientation of inclusions is discussed. It is assumed that the components of the composite show orthotropic symmetry of thermoelastic properties. As a numerical example arbolite (straw particle inclusions in a cement matrix) is considered. The dependencies of Young's moduli, Poisson's ratios and shear moduli from the concentration of inclusions and for certain orientations of the inclusions are predicted and discussed. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
In this paper, the second order statistics of post buckling response of functionally graded materials plate (FGM) subjected to mechanical and thermal loading with nonuniform temperature changes subjected to temperature independent (TID) and dependent (TD) material properties is examined. Material properties such as material properties of each constituent’s materials, volume fraction index are taken as independent random input variables. The basic formulation is based on higher order shear deformation theory (HSDT) with von-Karman nonlinear kinematic using modified C0 continuity. A direct iterative based C0 nonlinear finite element method (FEM) combined with mean centered first order perturbation technique (FOPT) proposed by last two authors for the composite plate is extended for Functionally Graded Materials (FGMs) plate with reasonable accuracy to compute the second order statistics (mean and coefficient of variation) of the post buckling load response of the FGM plates. The effect of random material properties with amplitude ratios, volume fraction index, plate thickness ratios, aspect ratios, boundary conditions and types of loadings subjected to TID and TD material properties are presented through numerical examples. The performance of outlined present approach is validated with the results available in literatures and independent Monte Carlo simulation (MCS).  相似文献   

19.
The subject of this paper is the inverse reflection problem for a stratified elastic half-space. That is, a linear elastic medium, whose elastic properties depend only on depth from a planar free surface, is stimulated at t = 0 by a plane wave impulsive source. The motion of a typical surface element is recorded for 0 ? t ? 2T. It is shown that this surface trace determines the acoustic impedance of the medium as a function of travel time, to (travel-time) depth T. Moreover, we give a precise characterization of those functions which may appear as surface traces, and show uniqueness, existence, and continuous dependence of the logarithm of the impedance as a function of the surface trace in the Sobolev H1 topology.  相似文献   

20.
This paper is a continuation of [N. Ghoussoub, Y. Guo, On the partial differential equations of electrostatic MEMS devices: Stationary case, SIAM J. Math. Anal. 38 (2007) 1423-1449] and [N. Ghoussoub, Y. Guo, On the partial differential equations of electrostatic MEMS devices II: Dynamic case, NoDEA Nonlinear Differential Equations Appl. (2008), in press], where we analyzed nonlinear parabolic problem on a bounded domain Ω of RN with Dirichlet boundary conditions. This equation models a simple electrostatic Micro-Electromechanical System (MEMS) device consisting of a thin dielectric elastic membrane with boundary supported at 0 above a rigid ground plate located at −1. Here u is modeled to describe dynamic deflection of the elastic membrane. When a voltage—represented here by λ—is applied, the membrane deflects towards the ground plate and a snap-through (touchdown) must occur when it exceeds a certain critical value λ (pull-in voltage), creating a so-called “pull-in instability” which greatly affects the design of many devices. In an effort to achieve better MEMS design, the material properties of the membrane can be technologically fabricated with a spatially varying dielectric permittivity profile f(x). In this work, some a priori estimates of touchdown behavior are established, based on which the refined touchdown profiles are obtained by adapting self-similar method and center manifold analysis. Applying various analytical and numerical techniques, some properties of touchdown set—such as compactness, location and shape—are also discussed for different classes of varying permittivity profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号