首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to improve the cycle stability of spinel LiMn2O4 electrode at elevated temperature, the LiCoO2-coated and Co-doped LiMn2O4 film were prepared by an electrostatic spray deposition (ESD) technique. LiCoO2-coated LiMn2O4 film shows excellent cycling stability at 55 °C compared to pristine and Co-doped LiMn2O4 films. The samples were studied by X-ray diffraction, scanning electron microscopy, Auger electron spectroscopy, cyclic voltammetry and electrochemical impedance spectroscopy. The excellent performance of LiCoO2-coated LiMn2O4 film can be explained by suppression of Mn dissolution. On the other hand, the LiCoO2-layer on the LiMn2O4 surface allows a homogenous Li+ insertion/extraction during electrochemical cycles and improves its structure stability.  相似文献   

2.
To improve the electrochemical performance of an all-solid-state In/80Li2S⋅20P2S5 (electrolyte)/LiMn2O4 cell, a lithium-titanate thin film was used to coat LiMn2O4. The interfacial resistance between LiMn2O4 and the electrolyte (measured after initial charging) decreased when the LiMn2O4 particles were coated with lithium-titanate. A cell with lithium-titanate-coated LiMn2O4 had a higher capacity than a cell with noncoated LiMn2O4 for current densities in the range 0.064 to 2.6 mA cm− 2. Additionally, a cell with coated LiMn2O4 retained 96% of the 10th-cycle reversible capacity at a current density of 0.064 mA cm− 2 after 50 cycles.  相似文献   

3.
Two kinds of spinel LiMn2O4 thin film for lithium ion micro-batteries were successfully prepared on polycrystal Pt substrates by spin coating methods, which were carried out under ultrasonic irradiation (USG) and magnetic stirring (MSG), respectively. The microstructures and electrochemical performance of LiMn2O4 thin films were characterized by thermogravimetry analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), and galvanostatic charge-discharge measurements. It was found that the crystalline structure of USG samples grew better than that of the MSG samples. At the same time, higher discharge capacity and better cycle stability were obtained for the LiMn2O4 thin films of USG at the current density of 50 μAh/cm2 between 3.0 and 4.3 V. The 1st discharge capacity was 57.8 μAh/cm2-μm for USG thin films and 51.7 μAh/cm2-μm for MSG thin films. After 50 cycles, 91.4% and 69% of discharge capacity could be retained respectively, indicating that ultrasonic irradiation condition during spin coating was more suitable for preparing spinel LiMn2O4 thin films with better electrode performance for lithium ion micro-batteries.  相似文献   

4.
Combining two methods, coating and doping, to modify spinel LiMn2O4, is a novel approach we used to synthesize active material. First we coated the LiMn2O4 particles with the nickel oxide particles by means of homogenous precipitation, and then the nickel oxide-coated LiMn2O4 was calcined at 750 °C to form a LiNixMn2−xO4 shell on the surface of spinel LiMn2O4 particles. Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), cyclic voltammetry (CV) and charge-discharge test were performed to characterize the spinel LiMn2O4 before and after modification. The experimental results indicated that a spinel LiMn2O4 core is surrounded by a LiNixMn2−xO4 shell. The resulting composite showed excellent electrochemical cycling performance with an average fading rate of 0.014% per cycle. This improved cycle stability is greatly attributed to the suppression of Jahn-Teller distortion on the surface of spinel LiMn2O4 particles during cycling.  相似文献   

5.
Caie Lai  Wenyi Ye  Huiyong Liu  Wenji Wang 《Ionics》2009,15(3):389-392
The TiO2-coated LiMn2O4 has been prepared by a carrier transfer method and investigated. This novel synthetic method involved the transfer of TiO2 into the surface of LiMn2O4 with Vulcan XC-72 active carbon powders as a dispersant. The X-ray diffraction shows that spinel structure of materials does not change after the coating of TiO2. The electrochemical performance tests show that the initial discharge capacity of TiO2-modified LiMn2O4 is 111.5 mA h g−1, which is better than that of pristine LiMn2O4 (103.8 mA h g−1). The cyclic performance is significantly improved after surface modification. The TiO2-modified LiMn2O4 by a carrier transfer method exhibits better discharge capability and lower resistance.  相似文献   

6.
Jaephil Cho   《Solid State Ionics》2003,160(3-4):241-245
Micron-sized LiMn2O4 particles were easily coated on LiCoO2 cathodes using an amphoteric gelatin surfactant at pH4–5. The coated LiCoO2 material showed a significantly higher thermal stability during charging and capacity retention on cycling at 4.6 V, compared to the bare LiCoO2.  相似文献   

7.
Cathode material LiMn2O4 nanorod was prepared by annealing of the mixed precursor which was synthesized by low heating solid state coordination method using lithium acetate, manganese acetate and oxalic acid as starting materials. The structures and morphologies of the LiMn2O4 nanorod were investigated as a function of annealing temperature and time. The results showed that all samples in different annealing temperatures and time have the same spinel structure. The higher the annealing temperature is, the more complete the crystal structure forms, and the larger the particle size is. In addition, the electrochemical properties of the LiMn2O4nanorod were studied in this paper.  相似文献   

8.
Surface morphology in 3.5 × 3.5 μm2 area of spinel LiMn2O4, which is a typical cathode material for Li ion secondary batteries, is studied using an atomic force microscopy (AFM) with a conductive probe. Negative bias voltage is applied to the probe to attract Li+ ions toward LiMn2O4 surface during the AFM observation. Before applying the voltage (0 V), the whole LiMn2O4 surface is covered with scale-shaped grains. Under the negative voltage of 5.5 V, electric current abruptly increases, indicating Li+ ionic conduction. Simultaneously, part of the scale-shaped grains expand and flatten. Jahn-Teller phase transition, which is induced by the repulsive interaction between the Mn-eg and O-2p electrons in Li accumulated layer, is proposed as a possible origin of these results.  相似文献   

9.
A novel electrode system composed of three-dimensionally ordered macroporous (3DOM) Li1.5Al0.5Ti1.5(PO4)3 (LATP) and LiMn2O4 was fabricated by the colloidal crystal templating method and sol–gel process. A LATP nanoparticle for the fabrication of 3DOM-LATP was prepared by a sol–gel process. A suspension containing polystyrene (PS) beads and the LATP nanoparticles was filtrated by using a polycarbonate filter to accumulate PS beads and LATP. The accumulated PS beads had a close-packing structure, and the void between PS beads was filled with LATP nanoparticles. 3DOM-LATP was obtained by heat treatment of the accumulated composite. Li–Mn–O sol was injected by a vacuum impregnation process into the macropores of 3DOM-LATP and then was heated to form three-dimensionally ordered composite materials consisting of LiMn2O4 and LATP. The formation of the composite between 3DOM-LATP and LiMn2O4 were confirmed with scanning electron microscopy and X-ray diffraction method. The prepared composite electrode system exhibited a good electrochemical performance. Paper presented at the 11th EuroConference on the Science and Technology of Ionics, Batz-sur-Mer, Sept. 9–15, 2007.  相似文献   

10.
高潭华  刘慧英  张鹏  吴顺情  杨勇  朱梓忠 《物理学报》2012,61(18):187306-187306
采用基于密度泛函理论的第一性原理方法, 在广义梯度近似(GGA)和GGA+U方法下对尖晶石型LiMn2O4及其Al掺杂 的尖晶石型LiAl0.125Mn1.875O4晶体的结构和电子性质进行了计算. 结果表明: 采用GGA方法得到尖晶石型LiMn2O4是立方晶系结构, 其中的Mn离子为+3.5价, 无法解释它的Jahn-Teller 畸变. 给出的LiMn2O4能带结构特征也与实验结果不符. 而采用GGA+U方法得到在低温下的LiMn2O4和其掺杂 体系LiAl0.125Mn1.875O4的晶体都是正交结构, 与实验一致. 也能明确地确定Mn的两种价态Mn3+/Mn4+的分布并且能够说明Mn3+O6z方向有明显的Jahn-Teller 畸变, 而Mn4+O6则没有畸变. LiMn2O4的能带结构与实验比较也能够符合. 采用GGA+U方法对Al掺杂体系的LiAl0.125Mn1.875O4的研究表明, 用Al替换一个Mn不会明显地改变晶体的电子性质, 但可以有效地消除Al3+O6 八面体的Jahn-Teller畸变, 从而改善正极材料LiMn2O4的性能, 这与电化学实验的观察结果相一致.  相似文献   

11.
The preparation and characterization of the spinel LiMn2O4 obtained by solid state reaction from quasi-amorphous -MnO2 is reported. A well-defined highly pure spinel was characterized from X-ray diffractograms. The average manganese valence of -MnO2 and spinel samples was found to be 3.89±0.01 and 3.59±0.01, respectively. The electrochemical performance of the spinel was evaluated through cyclic voltammetry and chronopotentiometry. The voltammetric profiles obtained at 1 mV/s for the LiMn2O4 electrode in 1 M LiClO4 dissolved in a 2:1 mixture of ethylene carbonate and dimethyl carbonate showed typical peaks for the lithium insertion/extraction reactions. The charge capacity of this electrode was found to be 110 mA h g−1 for the first charge/discharge cycles.  相似文献   

12.
Here are reported for the first time electrochemical data on all-solid-state lithium microbatteries using crystalline sputtered V2O5 thin films as cathode materials and LiPON as solid electrolyte. The stable specific capacity of 30 µAh/cm2 found with a 2.4 µm thick film competes very well with the best values obtained for solid state microbatteries using amorphous films. With the challenge of decreasing the temperature of heat treatment for sputtered LiCoO2 thin films, we show that a temperature of 500 °C combined with an optimized bias sputtering (-50 V) allows to get highly crystalline deposits, to minimize the presence of Co3O4 and to suppress any trace of the cubic phase. At the same time the theoretical specific capacity is reached in the 4.2 V-3 V range and a good cycling behaviour is achieved with a high capacity of 50 µAh/cm2/µm after 140 cycles at 10 µA.cm2.  相似文献   

13.
H. G?ktepe  H. ?ahan  ?. Patat  A. ülgen 《Ionics》2009,15(2):233-239
To improve the cycle performance of spinel LiMn2O4 as the cathode of 4-V-class lithium secondary batteries, spinel phases LiM x Mn2 − x O4 (M=Li, Fe, Co; x = 0, 0.05, 0.1, 0.15) and LiFe0.05M y Mn1.95 − y O4 (M=Li, Al, Ni, Co; y = 0.05, 0.1) were successfully prepared using the sol–gel method. The spinel materials were characterized by powder X-ray diffraction (XRD), elemental analysis, and scanning electron microscopy. All the samples exhibited a pure cubic spinel structure without any impurities in the XRD patterns. Electrochemical studies were carried out using the Li|LiM x Mn2 − x O4 (M=Li, Fe, Co; x = 0, 0.05, 0.1, 0.15) and LiFe0.05M y Mn1.95 − y O4 (M=Li, Al, Ni, Co; y = 0.05, 0.1) cells. These cathodes were more tolerant to repeated lithium extraction and insertion than a standard LiMn2O4 spinel electrode in spite of a small reduction in the initial capacity. The improvement in cycling performance is attributed to the stabilization in the spinel structure by the doped metal cations.  相似文献   

14.
SrAl2O4:Eu2+, Dy3+ thin films were grown on Si (1 0 0) substrates in different atmospheres using the pulsed laser deposition (PLD) technique. The effects of vacuum, oxygen (O2) and argon (Ar) deposition atmospheres on the structural, morphological and photoluminescence (PL) properties of the films were investigated. The films were ablated using a 248 nm KrF excimer laser. Improved PL intensities were obtained from the unannealed films prepared in Ar and O2 atmospheres compared to those prepared in vacuum. A stable green emission peak at 520 nm, attributed to 4f65d1→4f7 Eu2+ transitions was obtained. After annealing the films prepared in vacuum at 800 °C for 2 h, the intensity of the green emission (520 nm) of the thin film increased considerably. The amorphous thin film was crystalline after the annealing process. The diffusion of adventitious C into the nanostructured layers deposited in the Ar and O2 atmospheres was most probably responsible for the quenching of the PL intensity after annealing.  相似文献   

15.
It was found for the first time that the catalysis of yttrium doping of spinel LiMn2O4 can enhance the electrochemical activities of manganese, leading to both improvement of electrochemical capacity and reactivity with the electrolyte of manganese. A proper amount of doping was 0.5%, and such yttrium-doped sample, Li(Y0.005Mn0.995)2O4, had an initial capacity of 130 mAh g−1 over that of the undoped one with the capacity retention to reach 92.3% exceeding that of the undoped one at 100th cycle.  相似文献   

16.
Al18B4O33w/Co composite powders were prepared through electroless depositing Co on Al18B4O33 whiskers and the microstructure of the prepared composite powders was adjusted through heat-treatment. The included Co oxide is reduced and the density as well as the crystal perfection of the coatings is improved when annealed at 400 °C in H2 atmosphere. An increase of 105 S m−1 in conductivity together with an increase of 28% in Ms is obtained, resulting in a prominent increase of the permittivity and the permeability. The increase of permittivity, specifically the dielectric relaxation is attributed to the increase of conductivity. The increase of permeability is attributed to the increase of Ms and the microstructure evolution. The increase of electromagnetic parameters in 2-18 GHz band is believed to enhance the electromagnetic wave absorbing performance of the Al18B4O33w/Co composite powders.  相似文献   

17.
SrAl2O4:Eu2+,Dy3+ thin films were grown on Si (1 0 0) substrates using the pulsed laser deposition (PLD) technique to investigate the effect of vacuum, oxygen (O2) and argon (Ar) deposition atmospheres on the structural, morphological, photoluminescence (PL) and cathodoluminescence (CL) properties of the films. The films were ablated using a 248 nm KrF excimer laser. Atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS) and fluorescence spectrophotometry were used to characterize the thin films. Auger electron spectroscopy (AES) combined with CL spectroscopy were employed for the surface characterization and electron-beam induced degradation of the films. Better PL intensities were obtained from the unannealed films prepared in Ar and O2 atmospheres with respect to those prepared in vacuum. A stable green emission peak at 515 nm, attributed to 4f65d1→4f7 Eu2+ transitions were obtained with less intense peaks at 619 nm, which were attributed to transitions in Eu3+. After annealing the films prepared in vacuum at 800 °C for 2 h, the intensity of the green emission (520 nm) of the thin film increased considerably. The amorphous thin film was crystalline after the annealing process. The CL intensity increased under prolonged electron bombardment during the removal of C due to electron stimulated surface chemical reactions (ESSCRs) on the surface of the SrAl2O4:Eu2+, Dy3+ thin films. The CL stabilized and stayed constant thereafter.  相似文献   

18.
The effect of the crystalline quality of ultrathin Co films on perpendicular exchange bias (PEB) has been investigated using a Au/Co/Au/α-Cr2O3 thin film grown on a Ag-buffered Si(1 1 1) substrate. Our investigation is based on the effect of the Au spacer layer on the crystalline quality of the Co layer and the resultant changes in PEB. An α-Cr2O3(0 0 0 1)layer is fabricated by the thermal oxidization of a Cr(1 1 0) thin film. The structural properties of the α-Cr2O3(0 0 0 1) layer including the cross-sectional structure, lattice parameters, and valence state have been investigated. The fabricated α-Cr2O3(0 0 0 1) layer contains twin domains and has slightly smaller lattice parametersthan those of bulk-Cr2O3. The valence state of the Cr2O3(0 0 0 1) layer is similar to that of bulk Cr2O3. The ultrathin Co film directly grown on the α-Cr2O3(0 0 0 1) deposited by an e-beam evaporator is polycrystalline. The insertion of a Au spacer layer with a thickness below 0.5 nm improves the crystalline quality of Co, probably resulting in hcp-Co(0 0 0 1). Perpendicular magnetic anisotropy (PMA) appears below the Néel temperature of Cr2O3 for all the investigated films. Although the PMA appears independently of the crystallinequality of Co, PEB is affected by the crystalline quality of Co. For the polycrystalline Co film, PEB is low, however, a high PEB is observed for the Co films whose in-plane atom arrangement is identical to that of Cr3+ in Cr2O3(0 0 0 1). The results are qualitatively discussed on the basis of the direct exchange coupling between Cr and Co at the interface as the dominant coupling mechanism.  相似文献   

19.
BaAl2O4:Eu2+,Nd3+,Gd3+ phosphors were prepared by a combustion method at different initiating temperatures (400–1200 °C), using urea as a comburent. The powders were annealed at different temperatures in the range of 400–1100 °C for 3 h. X-ray diffraction data show that the crystallinity of the BaAl2O4 structure greatly improved with increasing annealing temperature. Blue-green photoluminescence, with persistent/long afterglow, was observed at 498 nm. This emission was attributed to the 4f65d1–4f7 transitions of Eu2+ ions. The phosphorescence decay curves were obtained by irradiating the samples with a 365 nm UV light. The glow curves of the as-prepared and the annealed samples were investigated in this study. The thermoluminescent (TL) glow peaks of the samples prepared at 600 °C and 1200 °C were both stable at ∼72 °C suggesting that the traps responsible for the bands were fixed at this position irrespective of annealing temperature. These bands are at a similar position, which suggests that the traps responsible for these bands are similar. The rate of decay of the sample annealed at 600 °C was faster than that of the sample prepared at 1200 °C.  相似文献   

20.
The nature of antimony-enriched surface layer of Fe-Sb mixed oxides   总被引:1,自引:0,他引:1  
Antimony segregation is a common feature in Fe-Sb mixed oxides, which have been widely applied as catalysts in selective oxidation and ammoxidation reactions. This paper attempts to shed a light on the cause of such a common feature and on the nature of the antimony-enriched surface layer over FeSbO4 by means of XPS surface analysis. Single-phase FeSbO4 samples prepared by different methods were studied, and the antimony in their surface layer is a mixture of both Sb5+ and Sb3+ rather than single Sb5+. Their surface composition is close to FeSb2O6, which could be described as (FeSbO4)(Sb2O4)δ, δ = 0.5, and it is not “Fe(II)Sb(V)2O6” as suggested in literature. Fe-Sb mixed oxides with Sb/Fe > 1 (mol/mol) are mixtures of FeSbO4 and Sb2O4, and the surface of FeSbO4 grains would be a layer of (FeSbO4)(Sb2O4)δ, δ ≥ 0.5. Fe-Sb mixed oxides with Sb/Fe < 1 are mixtures of FeSbO4 and Fe2O3, and the surface of FeSbO4 grains would be a layer of (FeSbO4)(Sb2O4)δ, δ ≤ 0.5, but the remaining Fe2O3 would be encapsulated by a layer of FeSbO4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号