首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 796 毫秒
1.
AB_2型星形杂臂偶氮液晶聚合物的合成及表征   总被引:1,自引:1,他引:1  
通过原子转移自由基聚合(ATRP)与ATRP衍生物化学修饰结合的方法,合成了一系列AB2型星形杂臂偶氮液晶聚合物.其中,A为聚苯乙烯,B为聚6-[4-(4′-甲氧基苯基)偶氮苯氧基己酯](PMMAZO).合成分三步进行.首先,以ATRP方法得到ω-溴聚苯乙烯活性链PS(Br).然后对PS(Br)进行化学改性,得到带两个末端溴原子的聚苯乙烯活性链PS(Br)2·最后,以PS(Br)2作为双官能团大分子引发剂,引发6-[4-(4′-甲氧基苯基)偶氮苯氧基]己酯(MMAZO)发生ATRP聚合,得到星形杂臂PS(PMMAZO)2聚合物.进一步对聚合产物进行了GPC和1H-NMR分析.结果表明合成产物是预期的星形杂臂聚合物,产物分子量可控且分子量分布狭窄.同时,以DSC和POM表征了星形杂臂聚合物的液晶性.  相似文献   

2.
一种含乙氧羰基偶氮苯液晶三嵌段共聚物的合成与表征   总被引:1,自引:0,他引:1  
邓伟  王晓工 《高分子学报》2008,(11):1118-1122
利用原子转移自由基聚合(ATRP),合成了一种含有乙氧羰基偶氮苯的液晶三嵌段共聚物,并合成了一种同样偶氮生色团的均聚物进行对比.均聚物(PC6ET)由偶氮单体甲基丙烯酸{6-[4-(4-乙氧羰基苯基偶氮)苯氧基]己酯}(C6ET)的ATRP反应制备.嵌段共聚物的合成,先通过聚环氧乙烷(PEO)和过量的2-溴异丁酰溴、三乙胺反应,得到双端大分子引发剂(Br-PEO-Br);再进一步通过C6ET的ATRP反应,得到了三嵌段共聚物(PC6ET-PEO-PC6ET).热分析、偏光显微镜观察和X射线衍射实验证实,合成的均聚物和嵌段共聚物均为近晶型液晶聚合物.三嵌段共聚物的液晶清亮点比均聚物的稍低.  相似文献   

3.
以对-溴甲苯、对苯二酚、1-溴己烷、1,4-对苯二异氰酸酯等为原料, 通过Williamson反应、溴化反应、格氏反应、氧化反应、Suzuki反应等一系列反应合成了用于合成梯形聚合物的两种重要单体: 2,5-二[4′-N-(1,1-二羟甲基)丙胺基甲酰苯基]-1,4二己氧基苯和2,5-二{4′-N-[1,1-二(对异氰酸酯基苯胺甲酸酯基)丙胺基甲酰苯基]}-1,4二己氧基苯, 并利用元素分析、红外光谱(IR)、核磁共振氢谱(1H NMR)和质谱(MS)等手段对其进行了结构表征.  相似文献   

4.
偶氮苯侧链共聚硅氧烷的合成及液晶行为的研究   总被引:7,自引:0,他引:7  
以苯酚、十一烯酸、正溴己烷、对硝基苯酚和二氯亚砜为主要原料 ,通过取代、还原、重氮化和偶合等反应 ,合成了一种新的液晶单体 4 己氧基 4′ 十一烯 [1 0 ] 酰氧基偶氮苯 ,并与聚 (甲基氢硅氧烷 )通过硅氢加成生成一种新的高分子液晶 .通过1 H NMR和IR对单体和聚合物的结构进行了表征 ,并证实了聚合物的硅氢化程度近于完全 .通过DSC和热台偏光显微镜 (POM)对单体和聚合物的液晶行为进行了研究 ,证明了都具有液晶性  相似文献   

5.
以5-[2-(4-溴丁氧基)苯基]-10,15,20-三(对甲氧基苯基)卟啉和对羟基偶氮苯为原料,经取代反应合成新化合物5-[2-(对苯偶氮苯氧基)丁氧基]苯基-10,15,20-三[(对甲氧基苯基)]卟啉(2),2经配位反应合成了金属铜,锌配合物(2a)和(2b),其结构经UV-Vis,1H NMR,IR和元素分析表征。  相似文献   

6.
通过聚乙二醇单甲醚钠盐(MPEG-Na)和4-甲氧基-4′-(6-羟基己氧基)偶氮苯钠盐(AZO-Na)与六氯三聚磷腈的分步取代反应,合成了含偶氮苯基团的A3B3六杂臂星型聚合物[NP(MPEG550)(AZO)]3和[NP(MPEG1100)(AZO)]3.采用傅里叶红外光谱(FT-IR)、核磁共振谱(1H-NMR)和凝胶渗透色谱(GPC)手段确证了聚合物的基本结构,所得两种聚合物为接近单分散的多杂臂星型聚合物.采用热分析(DSC)和热台偏光显微镜(POM)研究了两种星型聚合物的热转变行为.结果表明,[NP(MPEG550)(AZO)]3具有可逆的热致液晶转变行为(TS-N=60.5℃;TN-I=104.7℃),为双向性液晶聚合物.而对于[NP(MPEG1100)(AZO)]3,观察不到液晶相转变行为,[NP(MPEG1100)(AZO)]3聚合物中柔性PEG链段含量过高可能导致其偶氮苯链段难局部有序而不能呈现液晶相转变.  相似文献   

7.
以天然高分子木质素为原料,通过亲核取代反应将木质素改性成为大分子引发剂,引发偶氮苯单体的原子转移自由基聚合(ATRP),得到一系列木质素基光响应聚合物.接枝后的木质素的热稳定性明显改善,且平均接枝率达到72.8%时才能表现出液晶行为.小角X射线散射和偏光显微镜的结果表明所形成的液晶相为近晶C型,层间距为3.21nm.在此基础上,用紫外-可见吸收光谱(UV-Vis)对木质素基液晶聚合物的光响应性进行研究,发现溶液中的光响应性比膜状态的光响应速率快.在紫外光的辐照下,木质素基液晶聚合物表现出快速的光致液晶-各向同性相变行为.  相似文献   

8.
采用紫外光聚合诱导相分离法制备聚合物稳定胆甾相液晶(PSCT),研究了单体4,4′-二[6-(丙烯酰氧基)己氧基]联苯(BAB6)、2-甲基-1,4-二[4-(3-丙烯酰氧基已氧基)苯甲酸基]对苯二酚(HCM-009)、2-甲基-1,4-二[4-(3-丙烯酰氧基丙氧基)苯甲酸基]对苯二酚(LCM)对常黑和常白模式PSCT光电性能的影响。结果表明:BAB6不具备液晶性,与液晶的相容性差,形成的聚合物网络疏松,网孔较大;HCM-009和LCM均具有液晶性,能很好地溶于液晶中。BAB6、HCM-009、LCM 3种单体形成的聚合物网络对液晶分子的锚定作用依次增强,常黑模式PSCT的闲值(饱和)电压减小,下降时间变长,迟滞宽度变大;而常白模式PSCT的驱动电压增大,响应速率变快。  相似文献   

9.
分别以三乙醇胺、三聚氰胺为原料,通过酰化反应合成了三种具有配体功能的三臂原子转移自由基聚合(ATRP)引发剂:三[2-(2-溴异丁酰氧基)乙基]胺,三[2-(4-氯甲基苯甲酰氧基)乙基]胺和2,4,6-三(2-溴异丁酰胺基)-1,3,5-三嗪,收率分别为81%,69%和83%。以三[2-(2-溴异丁酰氧基)乙基]胺既作引发剂又作配体进行甲基丙烯酸甲酯(MMA)的ATRP乳液聚合,结果表明反应前期与中期具有活性/可控特征。  相似文献   

10.
以1,2,3,4,5-五氟苯胺为原料, FeSO-4?7H2O负载的KMnO4为氧化剂, 制得全氟代偶氮苯, 在KOH作用下醇解, 进行丙烯酰化反应, 得到光响应性的功能单体4-甲基丙烯酰氧基九氟偶氮苯, 用GC-MS, 元素分析及NMR等方法对功能单体进行表征, 并研究了其光异构化性能. 以4-甲基丙烯酰氧基九氟偶氮苯(MANFAB)为功能单体, 与十字交联剂三羟甲基丙烷三甲基丙烯酸酯(TRIM)在自由基引发下合成了光响应性的三维交联聚合物, 并研究了其光响应性质.  相似文献   

11.
4‐Arm star side‐chain liquid crystalline (LC) polymers containing azobenzene with different terminal substituents were synthesized by atom transfer radical polymerization (ATRP). Tetrafunctional initiator prepared by the esterification between pentaerythritol and 2‐bromoisobutyryl bromide was utilized to initiate the polymerization of 6‐[4‐(4‐methoxyphenylazo)phenoxy]hexyl methacrylate (MMAzo) and 6‐[4‐(4‐ethoxyphenylazo)phenoxy]hexyl methacrylate (EMAzo), respectively. The 4‐arm star side‐chain LC polymer with p‐methoxyazobenzene moieties exhibits a smectic and a nematic phase, while that with p‐ethoxyazobenzene moieties shows only a nematic phase, which derives of different terminal substituents. The star polymers have similar LC behavior to the corresponding linear homopolymers, whereas transition temperatures decrease slightly. Both star polymers show photoresponsive isomerization under the irradiation with UV–vis light. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3342–3348, 2007  相似文献   

12.
A series of novel multi-arm star side-chain liquid crystalline (LC) copolymers with hyperbranched core moieties were synthesized by atom transfer radical polymerization (ATRP) using a multi-functional hyperbranched polyether as the initiator and chlorobenzene as the solvent. The multi-functional hyperbranched polyether initiator was prepared from poly(3-ethyl-3-(hydroxymethyl)oxetane) (PEHO) and 2-bromo-2-methylpropionyl bromide. The azobenzene side-chain liquid crystalline arms were designed to have an LC conformation of poly[6-(4-methoxy-4-oxy-azobenzene)hexyl methacrylate] with different molecular weights. Their characterization was performed with 1H NMR, size exclusion chromatograph (SEC), differential scanning calorimetry (DSC) and thermal polarized optical microscopy (POM). The multi-arm star side-chain liquid crystalline copolymers exhibited a smectic and a nematic phase, and the phase transition temperatures from the smectic to the nematic phase and from the nematic to isotropic phase increased with increasing the molecular weight of the multi-arm star side-chain liquid crystalline copolymers from 1.78 × 104 to 9.07 × 104.  相似文献   

13.
A three‐arm star azo side‐chain liquid crystalline (LC) homopolymer, poly[6‐(4‐methoxy‐4‐oxy‐azobenzene) hexyl methacrylate] (PMMAZO), was synthesized by atom transfer radical polymerization (ATRP) method. The polymerization of 6‐(4‐methoxy‐4‐oxy‐azobenzene) hexyl methacrylate proceeded in a controlled/“living” way. A series of three‐arm star LC block copolymers (PMMAZO‐b‐PMMA) were also synthesized. The polymers were characterized by 1H NMR, gel permeation chromatograph, and UV–vis spectra, respectively. The both polymers of PMMAZO and copolymers of PMMAZO‐b‐PMMA exhibited a smetic phase and a nematic phase. As concern to the PMMAZO, the glass‐transition temperature (Tg) and phase‐transition temperature from the smetic to nematic phase and from the nematic to isotropic phase increased with the increase of molecular weight (Mn(GPC)) of PMMAZO. The phase transition temperature of the block copolymers, PMMAZO‐b‐PMMA, with the same PMMA block was similar to that of PMMAZO. However, the Tg of the PMMAZO‐b‐PMMA decreased at low azo content and then increased with the increasing Mn(GPC) when azo content was above 61.3%. With illumination of linearly polarized Kr+ laser beam at modest intensities (35 mW/cm2), significant surface relief gratings formed on PMMAZO films with different molecular weights were observed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 777–789, 2008  相似文献   

14.
A series of side‐chain liquid‐crystalline (LC) homopolymers of poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] with different degrees of polymerization were synthesized by atom transfer radical polymerization (ATRP), which were prepared with a wide range of number‐average molecular weights from 5.1 × 103 to 20.6 × 103 with narrow polydispersities of around 1.17. Thermal investigation showed that the homopolymers exhibit two mesophases, a smectic phase, and a nematic phase, and the phase‐transition temperatures of the homopolymers increase clearly with increasing molecular weights. A series of novel LC coil triblock copolymers with narrow polydispersities was synthesized by ATRP, and their thermotropic phase behavior was investigated with differential scanning calorimetry and polarized optical microscopy. The LC coil triblocks were designed to have an LC conformation of poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] with a wide range of molecular weights from 3.5 × 103 to 1.7 × 104 and the coil conformation of poly(ethylene glycol) (PEG) (number‐average molecular weight: 6000 or 12,000) segment. Their characterization was investigated with 1H NMR, Fourier transform infrared spectra, and gel permeation chromatography. Triblock copolymers exhibited a crystalline phase, a smectic phase, and a nematic phase. The phase‐transition temperatures from the smectic to nematic phase and from the nematic to isotropic phase increased, and the crystallization of PEG depressed with increasing molecular weight of the LC block. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2854–2864, 2003  相似文献   

15.
One linear and two miktoarm star side-chain liquid crystalline (LC) block copolymers with p-methoxyazobenzene moieties were prepared by a combination of ring-opening polymerization (ROP) and atom transfer radical polymerization (ATRP) techniques. First, ROPs of ε -caprolactone (ε -CL) were carried out catalyzed by Sn(Oct)2 using three multifunctional initiators, hydroxyethyl 2-bromoisobutyrate (AB type), 3-hydroxy-2-(hydroxymethyl)-2-methylpropyl 2-bromo-2-methylpropanoate (A2B type) and 2,2-bis(hydroxymethyl)propane-1,3-diyl bis(2-bromo-2-methylpropanoate) (A2B2 type), at 110°C in toluene, respectively. Second, the previously obtained poly(ε -caprolactone)s (PCLs) with bromines functionalities were used as the macroinitiators to conduct ATRP of 6-(4-methoxy-4-oxy-azobenzene) hexyl methacrylate (MMAZO) with CuBr/PMDETA as the catalyst systems at 85°C in anisole to prepare the linear and miktoarm side-chain LC block copolymers (PCL-b-PMMAZO, (PCL)2-(PMMAZO) and (PCL)2-(PMMAZO)2). The produced polymers were well-controlled with the controlled molecular weights and the relatively narrow molecular weight distributions (M w/M n ≤ 1.35). The structures of the obtained polymers were all characterized by NMR, FT-IR and GPC analysis. Furthermore, the LC properties of the linear and miktoarm star block copolymers were also investigated by differential scanning calorimetry (DSC) and thermal polarized optical microscopy (POM).  相似文献   

16.
The effect of the terminal substituent of azobenzene on the properties of ABA triblock copolymers was investigated. For this study, three kinds of azobenzene‐containing monomers with different terminal substituents—6‐[4‐(4‐methoxyphenylazo)phenoxy] hexyl methacrylate, 6‐[4‐(4‐ethoxyphenylazo)phenoxy]hexyl methacrylate, and 6‐[4‐(4‐nitrophenylazo)phenoxy]hexyl methacrylate—were used to synthesize ABA triblock copolymers PMMAzo25–PEG13–PMMAzo25/PMMAzo12–PEG13–PMMAzo12, PEMAzo14–PEG13–PEMAzo14, and PNMAzo14–PEG13–PNMAzo14, respectively, by atom transfer radical polymerization (PMMAzo is poly{6‐[4‐(4‐methoxyphenylazo)phenoxy]hexyl methacrylate}, PEMAzo is poly{6‐[4‐(4‐ethoxyphenylazo)phenoxy]hexyl methacrylate}, and PNMAzo is poly{6‐[4‐(4‐nitrophenylazo)phenoxy]hexyl methacrylate}). These copolymers were characterized with 1H NMR spectroscopy and gel permeation chromatography and exhibited controlled molecular weights and narrow molecular weight distributions. Differential scanning calorimetry and polarizing optical microscopy showed that these copolymers had mesophases. PMMAzo25–PEG13–PMMAzo25 and PMMAzo12–PEG13–PMMAzo12 had a smectic mesophase and a nematic mesophase, whereas both PEMAzo14–PEG13–PEMAzo14 and PNMAzo14–PEG13–PNMAzo14 had a nematic mesophase. This demonstrated that the liquid‐crystalline properties of these copolymers highly depended on the terminal substituent of azobenzene. The photoresponsive behavior of these copolymers was also investigated in tetrahydrofuran solutions, and the influence of the terminal substituents attached to azobenzene was studied. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5190–5198, 2007  相似文献   

17.
Chiral side-chain liquid-crystalline (LC) polysiloxanes containing isosorbide groups were graft copolymerised with poly(methylhydrogeno)siloxane, a chiral LC monomer 6-(4-methoxy-benzoyloxy)-hexahydro-furo[3,2-b]furan-3-yl 4'-(4-undec-10-enoyloxy-benzoyloxy)-biphenyl-4-yl adipate and a nematic LC monomer 4'-(4-methoxy-benzoyloxy)-biphenyl-4-yl 4-(2-undec-10-enoyloxy-ethoxy)-benzoate. The chemical structures and LC properties of the monomers and polymers were characterised by use of various experimental techniques including Fourier transform infrared spectroscopy (FTIR), 1H-nuclear magnetic resonance (NMR), element analyses (EA), differential scanning calorimetry (DSC), polarised optical microscopy (POM) and X-ray diffraction (XRD). All the chiral LC polymers showed LC properties with very wide mesophase temperature ranges and the chiral component in the LC polymer systems lead to the appearance of a cholesteric phase. The polymers bearing most chiral LC monomer component showed smectic phases by reason of regular structures in the polymer systems. With the increase of another nematic LC monomer in the polymers, the regular polymer structures were destroyed because of different chemical structures between the two kinds of LC monomers, leading to the disappearance of the smectic arrangement.  相似文献   

18.
A novel amphotropic polymer which could exhibit liquid-crystalline behavior both in the solvent and in the heating process was synthesized through azo polymers grafting from cellulose nanocrystals (CNCs). The CNCs, prepared by acid hydrolysis of filter paper, were characterized by Atomic Force Microscopy (AFM). Poly{6-[4-(4-methoxyphenylazo)phenoxy] hexyl methacrylate}(PMMAZO), which was a liquid-crystalline polymers (LCP), was successfully to graft from CNC via Atom transfer radical polymerization (ATRP). The structure and thermal properties of the PMMAZO-grafted CNC were investigated using Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analyses (TGA). Its phase structures and transitions were studied by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). The experimental results showed that the PMMAZO-grafted CNC exhibited both types of liquid crystal formation, thermotropic and lyotropic.  相似文献   

19.
A series of organic/inorganic hybrid star‐shaped polymers were synthesized by atom transfer radical polymerization using 3‐(3,5,7,9,11,13,15‐heptacyclohexyl‐pentacyclo[9.5.1.13,9.15,15.17,13]‐octasiloxane‐1‐yl)propyl methacrylate (MA‐POSS) and poly(ethylene glycol) methyl ether methacrylate (PEGMA) as monomers and octakis(2‐bromo‐2‐methylpropionoxypropyldimethylsiloxy)octasilsesquioxane as an initiator. Star‐shaped polymers with methyl methacrylate (MMA) and PEGMA moieties were also prepared for comparison purposes. Dimensionally stable freestanding film could be obtained from the hybrid star‐shaped polymer containing 26 wt % of MA‐POSS moieties although its glass transition temperature is very low, ?60.9 °C. As a result, the hybrid star‐shaped polymer electrolyte containing lithium bis(trifluoromethanesulfonyl)imide showed ionic conductivities (1.75 × 10?5 S/cm at 30 °C), which were two orders of magnitude higher than those of the star‐shaped polymer electrolyte with MMA moieties. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号