首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
报道了一种小动物活体荧光-光热双模成像系统, 其兼具荧光成像和热成像双功能, 具有成像灵敏度高、 采集速度快(≤51 frame/s)、 组织穿透深度大(近红外荧光成像时可达10 mm)以及0.1 ℃的热成像分辨率. 该系统不但能够实现小动物皮下肿瘤和深层组织/器官的荧光成像, 同时集成了热成像, 可实时监测光热治疗中的温度变化以及药物的控制释放过程, 有助于实现精准治疗.  相似文献   

2.
以氧化硅(SiO_2)前驱体与三嵌段共聚物F108合成较小粒径的SiO_2-共聚物杂化纳米体系(SNP),并与高效近红外发射的疏水染料M507自组装,构建了近红外发光纳米探针M507@SNP。同时,研究了M507@SNP的光物理性能和细胞毒性。动物成像实验证明该纳米成像探针可实现活体层次高信噪比的小动物全身成像和前哨淋巴结的指示。  相似文献   

3.
以氧化硅(SiO2)前驱体与三嵌段共聚物F108合成较小粒径的SiO2-共聚物杂化纳米体系(SNP),并与高效近红外发射的疏水染料M507自组装,构建了近红外发光纳米探针M507@SNP。同时,研究了M507@SNP的光物理性能和细胞毒性。动物成像实验证明该纳米成像探针可实现活体层次高信噪比的小动物全身成像和前哨淋巴结的指示。  相似文献   

4.
荧光成像具有时空分辨率高、 反馈快、 非侵入和无电离辐射等优点, 是一种重要的生物成像技术. 与传统用于荧光成像的可见光和近红外一区(NIR-I, 600~950 nm)相比, 近红外二区(NIR-Ⅱ, 1000~1700 nm)窗口具有低生物组织散射系数和低生物自发荧光, 采用NIR-Ⅱ光进行活体荧光成像能有效提高成像的分辨率、 信噪比和穿透深度. 稀土纳米颗粒(RENPs)具有大斯托克斯位移、 高化学稳定性、 可调的荧光寿命以及较窄的发射带, 是一种重要的荧光成像探针. 近年来, 一系列具有优异的NIR-Ⅱ发光性能的稀土纳米材料被用于高分辨活体荧光成像. 本文综合评述了近年来RENPs用于高分辨活体成像及诊疗中的研究进展, 概述了RENPs的掺杂调控、 基质晶格选择和复合敏化等NIR-Ⅱ发光增强策略, 介绍了其在多种生物医学场景中的靶向聚集、 荧光传感和疾病治疗等功能, 并总结了其在多路成像、 多模态成像和疾病诊疗中的应用. 最后, 简要分析了RENPs在未来生物医学应用中面临的挑战和发展的方向.  相似文献   

5.
以海茸β-1,3/1,6-葡聚糖(DAG)为研究对象,首先经还原胺化反应在DAG还原端引入功能氨基,再将其与N-羟基丁二酰亚胺(NHS)活化的荧光染料(Cy7)偶联,获得Cy7标记的DAG分子;利用小动物活体成像技术研究了DAG在小鼠体内的分布.结果表明,DAG在小鼠体内主要分布于肺、肝和肾,具有靶向小鼠肺部和通过肾排泄的特点.该方法简便、数据可靠,为多糖和寡糖的体内分布与代谢研究提供了参考.  相似文献   

6.
菁染料是一类经典的荧光染料母核, 具有摩尔消光系数大、 吸收波长可调、 溶解性良好及生物兼容性好等优点, 被广泛用于蛋白标记、 痕量金属离子检测、 生物活性物质检测、 细胞和活体成像及肿瘤靶向治疗等领域. 近年来, 生物医学领域对活体结构及功能成像深度提出更高的需求, 基于优异的长波长染料母核开发近红外荧光分子探针逐渐成为领域的研究重点. 吲哚七甲川菁染料(Cy7)是一类最具代表性的菁染料, 本文重点综合评述了自1992年以来基于Cy7结构开发的分子探针, 并介绍了该类荧光探针的设计策略. 最后, 讨论了该领域研究面临的挑战, 并对未来的发展方向进行了总结和展望.  相似文献   

7.
活性氧簇(ROS), 如过氧化氢, 在生物体内的各种生理和病理过程中发挥着重要作用. 生物体内活性氧簇水平的异常与多种疾病(炎症、 肿瘤和器官损伤等)密切相关, 使ROS监测成为研究和诊断这些疾病的重要工具. 目前, 实现活体内深组织中的活性氧簇成像仍然面临挑战. 本文设计并合成了一种响应型的19F磁共振成像(MRI)探针(Gd-DPBF), 并将其用于实现对活体内通用活性氧簇的检测和成像. 该探针由钆螯合物通过活性氧簇响应的芳香硼酸酯键与含氟砌块相连接构成. 体外和体内成像实验结果证实, 该探针可以实现在活体荷瘤小鼠中针对肿瘤中高表达的活性氧进行检测和成像, 展示了其在生物体内对活性氧簇相关生理过程进行深组织、 零生物背景成像方面的潜力.  相似文献   

8.
氟硼荧(BODIPY)类亲水性生物荧光探针近年来在结构优化和功能修饰方面取得了长足进步,因其水溶性修饰方法的不断优化,在活体生物荧光成像领域的应用研究日趋活跃,逐步成为新一代高性能生物成像材料.以水溶性修饰方法为主线,按照离子型、中性、两亲性BODIPY亲水性生物荧光探针分类,系统综述了近年来,重点是2006年以来BODIPY类亲水性荧光染料在生物体内各类必需及致病化学成分检测、癌细胞早期发现和干预、药物递送示踪、特定细胞器标记、胞内各类生物化学反应和性质变化实时监测、光动力治疗等多项生物学和医学领域的应用及研究进展,归纳了各类水溶性修饰方法的优劣及现阶段研究中存在的主要问题,并提出了未来发展方向.  相似文献   

9.
与传统的荧光生物成像相比, 近红外二区(NIR-II)荧光生物成像技术具有空间分辨率高、信噪比高、成像深度大、自发荧光低、生物损伤小等优势, 在活体成像、疾病诊断、无创治疗等领域应用前景广泛. 在众多的NIR-II荧光纳米材料中, 稀土近红外二区纳米荧光探针(NIR-II Ln-NPs)因具有化学稳定性和光稳定性好、发射带窄、发光颜色和寿命可调等优点受到研究人员的广泛关注. 因此, 本文系统介绍了NIR-II Ln-NPs的设计策略、控制合成、发光调控、表面修饰、以及在生物医学应用方面的最新研究进展, 并对该领域的技术难题及未来发展趋势进行了探讨.  相似文献   

10.
近红外二区(NIR Ⅱ,1000~1700 nm)生物成像作为近年来新生的光学成像技术,相对于传统的近红外一区(NIR I,750~900 nm)和可见光(Vis,400~750 nm)成像,由于其荧光波长更长,生物组织的自发荧光背景更低,光子散射值更低,其组织穿透深度更深,该技术更适合于活体原位成像.本文综述了近红外二区荧光成像技术的发展及其在活体成像方面的应用,总结了各项技术的特点,最后对该研究方向的发展前景进行了展望,指出通过化学材料、光电仪器和多模态技术等多方面的持续发展,有望推动近红外二区活体成像技术的临床转化.  相似文献   

11.
分子影像技术创新研究促进了体内免疫系统跟踪技术——免疫成像技术的发展,可实现对免疫细胞和免疫分子定位及其功能进行实时成像及无创可视化监控,协助评价免疫治疗的效果,并已成为免疫治疗中一个重要的新兴检测模块。目前,体内免疫成像技术的研究与应用仍处于初步阶段,本综述概述了近年来SPECT和PET成像方式用于免疫监测的研究进展,为未来免疫影像学新技术的发展和应用提供指导。  相似文献   

12.
This review presents a simple introduction on the unique properties and general synthesis of quantum dots (QDs) in which we lay emphasis on the optical applications in the biological system. The detection of biological molecules such as DNA, protein and enzyme, the cell-based analysis and in vivo animal imaging are mainly discussed.  相似文献   

13.
The unique properties of magnetic nanocrystals provide them with high potential as key probes and vectors in the next generation of biomedical applications. Although superparamagnetic iron oxide nanocrystals have been extensively studied as excellent magnetic resonance imaging (MRI) probes for various cell trafficking, gene expression, and cancer diagnosis, further development of in vivo MRI applications has been very limited. Here, we describe in vivo diagnosis of cancer, utilizing a well-defined magnetic nanocrystal probe system with multiple capabilities, such as small size, strong magnetism, high biocompatibility, and the possession of active functionality for desired receptors. Our magnetic nanocrystals are conjugated to a cancer-targeting antibody, Herceptin, and subsequent utilization of these conjugates as MRI probes has been successfully demonstrated for the monitoring of in vivo selective targeting events of human cancer cells implanted in live mice. Further conjugation of these nanocrystal probes with fluorescent dye-labeled antibodies enables both in vitro and ex vivo optical detection of cancer as well as in vivo MRI, which are potentially applicable for an advanced multimodal detection system. Our study finds that high performance in vivo MR diagnosis of cancer is achievable by utilizing improved and multifunctional material properties of iron oxide nanocrystal probes.  相似文献   

14.
Fluorescence sampling of cellular function is widely used in all aspects of biology, allowing the visualization of cellular and sub-cellular biological processes with spatial resolutions in the range from nanometers up to centimeters. Imaging of fluorescence in vivo has become the most commonly used radiological tool in all pre-clinical work. In the last decade, full-body pre-clinical imaging systems have emerged with a wide range of utilities and niche application areas. The range of fluorescent probes that can be excited in the visible to near-infrared part of the electromagnetic spectrum continues to expand, with the most value for in vivo use being beyond the 630 nm wavelength, because the absorption of light sharply decreases. Whole-body in vivo fluorescence imaging has not yet reached a state of maturity that allows its routine use in the scope of large-scale pre-clinical studies. This is in part due to an incomplete understanding of what the actual fundamental capabilities and limitations of this imaging modality are. However, progress is continuously being made in research laboratories pushing the limits of the approach to consistently improve its performance in terms of spatial resolution, sensitivity and quantification. This paper reviews this imaging technology with a particular emphasis on its potential uses and limitations, the required instrumentation, and the possible imaging geometries and applications. A detailed account of the main commercially available systems is provided as well as some perspective relating to the future of the technology development. Although the vast majority of applications of in vivo small animal imaging are based on epi-illumination planar imaging, the future success of the method relies heavily on the design of novel imaging systems based on state-of-the-art optical technology used in conjunction with high spatial resolution structural modalities such as MRI, CT or ultrasound.  相似文献   

15.
Nanomaterials with localized surface plasmon resonance (LSPR) locating in the near-infrared region have broad application prospects in the field of biomedicine. However, the biggest problem that limits the biomedical application of such nanomaterials lies in two aspects: First, the potential long-term in vivo toxicity caused by the metabolism of many nanomaterials with LSPR effect; Second, most of current nanomaterials with LSPR effect are difficult to achieve LSPR wavelength tunability in the near-infrared region to adapt to different biomedical applications. Copper selenide nanomaterials are composed of selenium and copper, which are necessary nutrient elements for human life. Because of the active and flexible chemical properties of selenium and copper, copper selenide nanomaterials can not only be effectively degraded and utilized in human body, but also be endowed with various physicochemical properties by chemical modification or doping. Recently, copper selenide nanomaterials have shown unique properties such as LSPR in the near-infrared region, making them attractive for near-infrared thermal ablation, photoacoustic imaging, disease marker detection, multimode imaging, and so on. Currently, to the best of our knowledge, there is no review on the LSPR properties of copper selenide nanomaterials and its biomedical applications. This review first discusses the relationship between the physicochemical properties and the LSPR of copper selenide nanomaterials and then summarizes the latest progress in the application of copper selenide nanomaterials in biological detection, diagnosis, and treatment of diseases. In addition, the advantages, and prospects of copper selenide nanomaterials in biomedicine are also highlighted.  相似文献   

16.
Beta-galactosidase is a widely used reporter enzyme, but although several substrates are available for in vitro detection, its application for in vivo optical imaging remains a challenge. To obtain a probe suitable for in vivo use, we modified our previously developed activatable fluorescence probe, TG-betaGal (J. Am. Chem. Soc. 2005, 127, 4888-4894), on the basis of photochemical and photophysical experiments. The new probe, AM-TG-betaGal, provides a dramatic fluorescence enhancement upon reaction with beta-galactosidase, and further hydrolysis of the ester moiety by ubiquitous intracellular esterases affords a hydrophilic product that is well retained within the cells without loss of fluorescence. We used a mouse tumor model to assess the practical utility of AM-TG-betaGal, after confirming that tumors in the model could be labeled with an avidin-beta-galactosidase conjugate. This conjugate was administered to the mice in vivo, followed by AM-TG-betaGal, and subsequent ex vivo fluorescence imaging clearly visualized intraperitoneal tumors as small as 200 microm. This strategy has potential clinical application, for example, in video-assisted laparoscopic tumor resection.  相似文献   

17.
Aberrant expressions of biomolecules occur much earlier than tumor visualized size and morphology change, but their common measurement strategies such as biopsy suffer from invasive sampling process. In vivo imaging of slight biomolecule expression difference is urgently needed for early cancer detection. Fluorescence of rare earth nanoparticles (RENPs) in second near-infrared (NIR-II) region makes them appropriate tool for in vivo imaging. However, the incapacity to couple with signal amplification strategies, especially programmable signal amplification strategies, limited their application in lowly expressed biomarkers imaging. Here we develop a 980/808 nm NIR programmed in vivo microRNAs (miRNAs) magnifier by conjugating activatable DNAzyme walker set to RENPs, which achieves more effective NIR-II imaging of early stage tumor than size monitoring imaging technique. Dye FD1080 (FD1080) modified substrate DNA quenches NIR-II downconversion emission of RENPs under 808 nm excitation. The miRNA recognition region in DNAzyme walker is sealed by a photo-cleavable strand to avoid “false positive” signal in systemic circulation. Upconversion emission of RENPs under 980 nm irradiation activates DNAzyme walker for miRNA recognition and amplifies NIR-II fluorescence recovery of RENPs via DNAzyme catalytic reaction to achieve in vivo miRNA imaging. This strategy demonstrates good application potential in the field of early cancer detection.  相似文献   

18.
The potential utility of an imaging agent for the detection of hepatic copper was investigated in a Wilson’s disease animal model. Solid-phase peptide synthesis was used to construct an imaging agent which consisted of a copper-binding moiety, taken from the prion protein, and a gamma ray-emitting indium radiolabel. Long–Evans Cinnamon (LEC) rats were used for the Wilson’s disease animal model. Our evaluation methodology consisted of administering the indium-labeled agent to both LEC and genetically healthy Long–Evans (LE) cohorts via a tail vein injection and following the pharmacokinetics with single-photon emission computed tomography (SPECT) over the course of an hour. The animals were then sacrificed and their livers necropsied. An additional control agent, lacking the copper-binding moiety, was used to gauge whether any change in the hepatic uptake might be caused by other physiological differences between the two animal models. LEC rats injected with the indium-labeled agent had roughly double the amount of hepatic radioactivity as compared to the healthy control animals. The control agent, without the copper-binding moiety, displayed a hepatic signal similar to that of the control LE animals. Additional intraperitoneal spiking with CuSO4 in C57BL/6 mice also found that the pharmacokinetics of the indium-labeled, prion-based imaging agent is profoundly altered by exposure to in vivo pools of extracellular copper. The described SPECT application with this compound represented a significant improvement over a previous MRI application using the same base peptide sequence.  相似文献   

19.
Liu  Yongchao  Teng  Lili  Liu  Hong-Wen  Xu  Chengyan  Guo  Haowei  Yuan  Lin  Zhang  Xiao-Bing  Tan  Weihong 《中国科学:化学(英文版)》2019,62(10):1275-1285
Photoacoustic imaging(PAI) is a non-destructive biomedical imaging technology with broad application prospects. PAI combines the advantages of optical imaging and ultrasound imaging with high selectivity and deep penetration to overcome the high scattering limitation of light in tissues. This emerging technology also achieves high-resolution and high-contrast imaging of deep tissue in vivo. Recently, photoacoustic(PA) probes based on organic dyes have emerged prominently in biosensing and bioimaging due to their excellent optical properties and structural adaptability. This paper gives an outline of the basic PAI principles and focuses on the application of organic-dye-based PA probes for molecular detection and in vivo imaging. The advantages of PAI technology and the drawbacks of current PA probes are then summarized. Finally, the prospects for application are evaluated considering the potential challenges in the biomedical fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号