首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Triple-resonance excitation and high-resolution photoelectron spectroscopy are combined to characterize the mode selectivity of vibrational autoionization of the high Rydberg states of NO2. Photoelectron spectra and vibrational branching fractions are reported for autoionizing Rydberg states converging to the NO2+ X 1Sigmag +(110) state, that is, with one quantum in the symmetric stretch, nu1, and one quantum in the bending vibration, nu2. These results indicate that autoionization proceeds most efficiently through the loss of one quantum from the symmetric stretch rather than from the bending vibration. The implications of this result are discussed in terms of the autoionization mechanism.  相似文献   

2.
The velocity-map imaging technique was used to record photoelectron and photofragment ion images of HCl following two-photon excitation of the E Sigma(+)(0+), V 1Sigma(+)(0+) (nu=9,10,11) states and subsequent ionization. The images allowed us to determine the branching ratios between autoionization and dissociation channels for the different intermediate states. These branching ratios can be explained on the basis of intermediate state electron configurations, since the configuration largely prohibits direct ionization in a one-electron process, and competition between autoionization and dissociation into H* (n=2)+Cl and H+Cl*(4s,4p,3d) is observed. From a fit to the vibrationally resolved photoelectron spectrum of HCl+ it is apparent that a single superexcited state acts as a gateway to autoionization and dissociation into H+Cl*(4s). Potential reconstruction of the superexcited state to autoionization was undertaken and from a comparison of different autoionization models it appears most likely that the gateway state is a purely repulsive and low-n Rydberg state with a (4Pi) ion core.  相似文献   

3.
Yencha AJ  Lopes MC  King GC  Hochlaf M  Song Y  Ng CY 《Faraday discussions》2000,(115):355-62; discussion 407-29
The pulsed-field ionization (PFI) photoelectron (PE) spectrum of HF has been recorded at the chemical dynamics beamline of the advanced light source over the photon energy range 15.9-16.5 eV using a time-of-flight selection scheme at a resolution of 0.6 meV. Rotationally-resolved structure in the HF+(X 2 pi 3/2, 1/2, v+ = 0, 1) band systems are assigned. The spectral appearance of these systems agrees with a previous VUV laser PFI-PE study. Importantly, extensive rotationally-resolved structure between these two vibrational band systems is also observed. This is attributed to ion-pair formation via Rydberg states converging on the v+ = 1 vibrational levels of the HF+(X 2 pi 3/2, 1/2) spin-orbit states. These Rydberg states are assigned to the 1 sigma+ part of the nd-complexes (sigma, pi, and delta). Ion-pair formation is observed in this study by the detection of F- ions. Some partially rotationally-resolved structure in a previously published threshold photoelectron spectrum is similarly attributed to ion-pair formation (F- detection) through a combination of the v+ = 17 level of the (A 2 sigma+) 3s sigma Rydberg state and the (X 2 pi 3/2, 1/2, v+ = 1) 7d Rydberg states. On the basis of the present study, an accurate experimental value for the dissociation energy of the ground state of HF has been obtained, D0(HF) = 5.8650(5) eV.  相似文献   

4.
The formation of high-n Rydberg atoms from the neutral dissociation of superexcited states of I(2) formed by resonant two-photon excitation of molecular iodine using an ArF laser has been investigated. The high-n Rydberg atoms I* are formed by predissociation of the optically excited molecular Rydberg states I*(2)[R(B (2)Sigma(g) (+))] converging on the I(2) (+)(B (2)Sigma(g) (+)) state of the ion. Measurement of the kinetic energy release of the Rydberg I* fragments allowed the identification of the asymptotic channels as I*[R((3)P(J))]+I((2)P(32)), where the I*[R((3)P(J))] are Rydberg atoms converging on the I(+)((3)P(J)) states of the ion with J=2, 1, and 0. In the case of the I*[R((3)P(2))] fragments, the average Rydberg lifetime is observed to be 325+/-25 micros. Based on experiments on the variation of the Rydberg atom signal with the field ionizing strength, the distribution of Rydberg levels peaks at about 25-50 cm(-1) below the ionization limit.  相似文献   

5.
Ion imaging methods have enabled identification of three mechanisms by which (79)Br(+) and (35)Cl(+) fragment ions are formed following one-color multiphoton excitation of BrCl molecules in the wavelength range 324.6 > lambda > 311.7 nm. Two-photon excitation within this range populates selected vibrational levels (v'= 0-5) of the [X (2)Pi(1/2)]5ssigma Rydberg state. Absorption of a third photon results in branching between (i) photoionization (i.e. removal of the Rydberg electron-a traditional 2 + 1 REMPI process) and (ii)pi*<--pi excitation within the core, resulting in formation of one or more super-excited states with Omega= 1 and configuration [A (2)Pi(1/2)]5ssigma. The fate of the latter states involves a further branching. They can autoionize (yielding BrCl(+)(X (2)Pi) ions in a wider range of v(+) states than formed by direct 2 + 1 REMPI). Further, one-photon absorption by the parent ions resulting from direct ionization or autoionization leads to formation of Br(+) and (energy permitting) Cl(+) fragment ions. Alternatively, the super-excited molecules can fragment to neutral atoms, one of which is in a Rydberg state. Complementary ab initio calculations lead to the conclusion that the observed [Cl**[(3)P(J)]4s + Br/Br*] products result from direct dissociation of the photo-prepared super-excited states, whereas [Br**[(3)P(J)]5p + Cl/Cl*] product formation involves interaction between the [A (2)Pi(1/2)]5ssigma and [X (2)Pi(1/2)]5psigma Rydberg potentials at extended Br-Cl bond lengths. Absorption of one further photon by the resulting Br** and Cl** Rydberg atoms leads to their ionization, and thus their appearance in the Br(+) and Cl(+) fragment ion images.  相似文献   

6.
We have studied the dissociative ionization behavior of Na2 molecules using two-color, three photon optical-optical double resonance enhanced excitation via the A(1)Sigma(u)(+) and the 2(1)Pi(g) states. Excess energy ranges from about 150 to about 1500 cm(-1) above threshold for dissociative ionization into ground-state Na and Na(+). Slow atomic Na(+) fragments and Na2(+) molecular ions are detected using a linear time-of-flight spectrometer operated in low field extraction, core sampling mode. To explain the observed energy dependence of the Na(+)/Na2(+) branching ratio, we introduce a semiclassical model for the underlying decay dynamics. Franck-Condon overlap densities for bound-free transitions starting in 2(1)Pi(g) vibrational levels indicate that atomic Na(+) fragments are primarily produced via Rydberg states, with principal quantum number n between 5 and 12, converging to the repulsive 1(2)Sigma(u)(+) first excited-state potential of Na2(+). Dynamics along these Rydberg curves involves competition between electronic (autoionizing) and nuclear (dissociative) degrees of freedom. Within the model, the autoionization lifetime tau auto is the only one free parameter available to fit calculated Na(+)/Na2(+) branching ratios as a function of excess energy to the observed values. The lifetime is assumed to be the same multiple c of the Bohr period of each Rydberg potential. A chi(2)-minimization procedure yields, for the range of principal quantum numbers involved, a most likely value of c = 1.5 +/- 0.3, implying that on average the Rydberg electron completes only 1 to 2 orbits before interaction with the excited core electron leads to autoionization.  相似文献   

7.
The photoionization efficiency (PIE) spectra of metastable sulfur (S) atoms in the 1 D and 1 S states have been recorded in the 73 350-84 950 cm(-1) frequency range by using a velocity-mapped ion imaging apparatus that uses a tunable vacuum ultraviolet laser as the ionization source. The S(1 D) and S(1 S) atoms are produced by the 193 nm photodissociation of CS2. The observed PIE spectra of S(1 D) and S(1 S) shows 35 autoionizing resonances with little or no contribution from direct photoionization into the S+(4S 3/2)+e(-) ionization continuum. Velocity-mapped ion images of the S+ at the individual autoionizing Rydberg resonances are used to distinguish whether the lower state of the resonance originates from the 1 D, 1 S, or 3P states. The analysis and assignment of the Rydberg peaks revealed 22 new Rydberg states that were not previously known. The autoionization lifetimes tau of the Rydberg states are derived from the linewidths by fitting the lines with the Fano formula. Deviations from the scaling law of tau(n*) proportional to, n*3, where n* is the effective quantum number of the Rydberg state, are observed. This observation is ascribed to perturbations by nearby triplet Rydberg states, which shorten the autoionization lifetimes of the singlet Rydberg levels.  相似文献   

8.
Ab initio electronic structure calculations of a relatively large number of Rydberg states of the CH radical were carried out employing the multireference single and double excitation configuration interaction (MRD-CI) method. A Gaussian basis set of cc-pV5Z quality augmented with 12 diffuse functions was used together with an extensive treatment of electron correlation. The main focus of this contribution is to investigate the 3d Rydberg complex assigned by Watson [Astrophys. J. 555, 472 (2001)] to three unidentified interstellar bands. The authors' calculations reproduce quite well the absolute excitation energies of the three components of the 3d complex, i.e., 2Sigma+(3dsigma), 2Pi(3dpi), and 2Delta(3ddelta), but not the energy ordering inferred from a rotational assignment of the 3d<--X 2Pi laboratory spectrum. The computation of the 4d complex is reported for the first time along with a number of other higher lying Rydberg species with an X 1Sigma+ core. The lowest Rydberg states belonging to series converging to the a 3Pi and A 1Pi excited states of CH+ are also calculated.  相似文献   

9.
The partial photoionization cross sections and asymmetry parameters of S atoms have been measured using constant-ionic-state (CIS) spectroscopy in the photon energy range 10.0-30.0 eV. The ionizations investigated in these CIS experiments are the (3p)(-1) ionizations S(+)((4)S)<--S((3)P), S(+)((2)D)<--S((3)P), and S(+)((2)P)<--S((3)P). For the first time Rydberg series which converge to the fourth ionization limit have been observed and assignments of these series have been proposed. These correspond to excitations to Rydberg states that are parts of series which converge to the fourth ionization limit, S(+)((4)P)<--S((3)P) (3s)(-1), and autoionize to the lower S(+)((4)S), S(+)((2)D), or S(+)((2)P) states. For each series observed in the CIS spectra photoelectron angular distribution studies, combined with other evidence, has allowed the angular momentum character of the free electron on autoionization to be determined.  相似文献   

10.
The photodissociation dynamics of I3- from 390 to 290 nm (3.18 to 4.28 eV) have been investigated using fast beam photofragment translational spectroscopy in which the products are detected and analyzed with coincidence imaging. At photon energies < or = 3.87 eV, two-body dissociation that generates I- + I2(A 3Pi1) and vibrationally excited I2- (X 2Sigmau+) + I(2P(3/2)) is observed, while at energies > or = 3.87 eV, I*(2P(1/2)) + I2- (X 2Sigmau+) is the primary two-body dissociation channel. In addition, three-body dissociation yielding I- +2I(2P(3/2)) photofragments is seen throughout the energy range probed; this is the dominant channel at all but the lowest photon energy. Analysis of the three-body dissociation events indicates that this channel results primarily from a synchronous concerted decay mechanism.  相似文献   

11.
Ionization of bromomethanes (CH3Br, CH2Br2, and CHBr3) upon collision with metastable He*(2(3)S) atoms has been studied by means of collision-energy-resolved Penning ionization electron spectroscopy. Lone-pair (nBr) orbitals of Br4p characters have larger ionization cross sections than sigma(C-Br) orbitals. The collision-energy dependence of the partial ionization cross sections shows that the interaction potential between the molecule and the He*(2(3)S) atom is highly anisotropic around CH3Br or CH2Br2, while isotropic attractive interactions are found for CHBr3. Bands observed at electron energies of approximately 2 eV in the He*(2(3)S) Penning ionization electron spectra (PIES) of CH2Br2 and CHBr3 have no counterpart in ultraviolet (He I) photoionization spectra and theoretical (third-order algebraic diagrammatic construction) one-electron and shake-up ionization spectra. Energy analysis of the processes involved demonstrates that these bands and further bands overlapping with sigma(C-Br) or piCH2 levels are related to autoionization of dissociating (He+ - Br-) pairs. Similarly, a band at an electron energy of approximately 1 eV in the He*(2(3)S) PIES spectra of CH3Br has been ascribed to autoionizing Br** atoms released by dissociation of (unidentified) excited states of the target molecule. A further autoionization (S) band can be discerned at approximately 1 eV below the lone-pair nBr bands in the He*(2(3)S) PIES spectrum of CHBr3. This band has been ascribed to the decay of autoionizing Rydberg states of the target molecule (M**) into vibrationally excited states of the molecular ion. It was found that for this transition, the interaction potential that prevails in the entrance channel is merely attractive.  相似文献   

12.
The photodissociation and photoionization dynamics of HBr via low-n Rydberg and ion-pair states was studied by using 2 + 1 REMPI spectroscopy and velocity map imaging of photoelectrons. Two-photon excitation at about 9.4-10 eV was used to prepare rotationally selected excited states. Following absorption of the third photon the unperturbed F (1)Delta(2) and i (3)Delta(2) states ionize directly into the ground vibrational state of the molecular ion according to the Franck-Condon principle and upon preservation of the ion core. In case of the V (1)Sigma(+)(0(+)) ion-pair state and the perturbed E (1)Sigma(+)(0(+)), g (3)Sigma(-)(0(+)), and H (1)Sigma(+)(0(+)) Rydberg states the absorption of the third photon additionally results in a long vibrational progression of HBr(+) in the X (2)Pi state as well as formation of electronically excited atomic photofragments. The vibrational excitation of the molecular ion is explained by autoionization of repulsive superexcited states into the ground state of the molecular ion. In contrast to HCl, the perturbed Rydberg states of HBr show strong participation of the direct ionization process, with ionic core preservation.  相似文献   

13.
The ion-pair dissociation dynamics of Cl2 -->(XUV) Cl(-)((1)S0) + Cl(+)((3P(2,1,0)) in the range 12.41-12.74 eV have been studied employing coherent extreme ultraviolet (XUV) radiation and the velocity map imaging) method. The ion-pair yield spectrum has been measured, and 72 velocity map images of Cl(-)((1)S0) have been recorded for the peaks in the spectrum. From the images, the branching ratios among the three spin-orbit components Cl(+)((3)P2), Cl(+)((3)P1) and Cl(+)((3)P0) and their corresponding anisotropic parameters beta have been determined. The ion-pair dissociation mechanism is explained by predissociation of Rydberg states converging to ion-core Cl2(+)(A(2)Pi(u)). The Cl(-)((1)S0) ion-pair yield spectrum has been assigned based on the symmetric properties of Rydberg states determined in the imaging experiments. The parallel and perpendicular transitions correspond to the excitation to two major Rydberg series, [A(2)Pi(u)]3d pi(g), (1)Sigma(u)(+) and [A(2)Pi(u)]5s sigma(g), (1)Pi(u), respectively. For the production of Cl(+)((3)P0), it is found that all of them are from parallel transitions. But for Cl(+)((3)P1), most of them are from perpendicular transitions. The production of Cl(+)((3)P2) is the major channel in this energy region, and they come from both parallel and perpendicular transitions. It is found that for most of the predissociations the projection of the total electronic angular momentum on the molecular axis (Omega) is conserved. The ion-pair dissociation may be regarded as a probe for the symmetric properties of Rydberg states.  相似文献   

14.
An experimental two-color photoionization dynamics study of laser-excited Br2 molecules is presented, combining pulsed visible laser excitation and tunable vacuum ultraviolet (VUV) synchrotron radiation with photoelectron imaging. The X 1Sigmag + -B 3Pi0+u transition in Br2 is excited at 527 nm corresponding predominantly to excitation of the v' = 28 vibrational level in the B 3Pi0+u state. Tunable VUV undulator radiation in the energy range of 8.40-10.15 eV is subsequently used to ionize the excited molecules to the X 2Pi32,12 state of the ion, and the ionic ground state is probed by photoelectron imaging. Similar experiments are performed using single-photon synchrotron ionization in the photon energy range of 10.75-12.50 eV without any laser excitation. Photoelectron kinetic energy distributions are extracted from the photoelectron images. In the case of two-color photoionization using resonant excitation of the intermediate B 3Pi0+u state, a broad distribution of photoelectron kinetic energies is observed, and in some cases even a bimodal distribution, which depends on the VUV photon energy. In contrast, for single-photon ionization, a single nearly Gaussian-shaped distribution is observed, which shifts to higher energy with photon energy. Simulated spectra based on Franck-Condon factors for the transitions Br2(X 1Sigmag+, v" = 0)-Br2 +(X 2Pi12,32, v+) and Br2(B 3Pi0+u, v' = 28)-Br2 +(X 2Pi12,32, v+) are generated. Comparison of these calculated spectra with the measured images suggests that the differences in the kinetic energy distributions for the two ionization processes reflect the different extensions of the vibrational wave functions in the v" = 0 electronic ground state (X 1Sigmag+) versus the electronically and vibrationally excited state (B 3Pi0+u, v' = 28).  相似文献   

15.
Dissociative direct photoionization of the N2O(X 1Sigma+) linear molecule via the N2O+(B 2Pi) ionic state induced by linearly polarized synchrotron radiation P in the 18-22 eV photon energy range is investigated using the (VA+,Ve,P) vector correlation method, where VA+ is the nascent velocity vector of the NO+, N2+, or O+ ionic fragment and Ve that of the photoelectron. The DPI processes are identified by the ion-electron kinetic energy correlation, and the IchiA+(thetae,phie) molecular frame photoelectron angular distributions (MFPADs) are reported for the dominant reaction leading to NO+ (X 1Sigma+,v) + N(2D)+ e. The measured MFPADs are found in satisfactory agreement with the reported multichannel Schwinger configuration interaction calculations, when bending of the N2O+(B 2Pi) molecular ion prior to dissociation is taken into account. A significant evolution of the electron scattering anisotropies is observed, in particular in the azimuthal dependence of the MFPADs, characteristic of a photoionization transition between a neutral state of Sigma symmetry and an ionic state of Pi symmetry. This interpretation is supported by a simple model describing the photoionization transition by the coherent superposition of two ssigma and ddelta partial waves and the associated Coulomb phases.  相似文献   

16.
Ultrafast relaxation of electronically excited pure He droplets is investigated by femtosecond time-resolved photoelectron imaging. Droplets are excited by extreme ultraviolet (EUV) pulses with photon energies below 24 eV. Excited states and relaxation products are probed by ionization with an infrared (IR) pulse with 1.6 eV photon energy. An initially excited droplet state decays on a time scale of 220 fs, leading predominantly to the emission of unaligned 1s3d Rydberg atoms. In a second relaxation channel, electronically aligned 1s4p Rydberg atoms are emitted from the droplet within less than 120 fs. The experimental results are described within a model that approximates electronically excited droplet states by localized, atomic Rydberg states perturbed by the local droplet environment in which the atom is embedded. The model suggests that, below 24 eV, EUV excitation preferentially leads to states that are localized in the surface region of the droplet. Electronically aligned 1s4p Rydberg atoms are expected to originate from excitations in the outermost surface regions, while nonaligned 1s3d Rydberg atoms emerge from a deeper surface region with higher local densities. The model is used to simulate the He droplet EUV absorption spectrum in good agreement with previously reported fluorescence excitation measurements.  相似文献   

17.
The NO(+) states lying in the ionization region of 20-40 eV have been investigated by high-resolution threshold photoelectron spectroscopy and a configuration interaction calculation. Substantial agreement between the structures on the present experimental and theoretical spectra in the 21-27 eV range enables us to assign the relevant inner-valence ionic states unambiguously. The dissociation products from the ion states are measured with threshold photoelectron-photoion coincidence spectroscopy, and the dissociation processes are discussed with reference to the potential energy curves calculated. Sharp peaks are observed in the ionization region of 27.5-35 eV, which are allocated to ionic Rydberg states converging to NO(2+).  相似文献   

18.
We report the anion photoelectron spectrum of I2- taken at 5.826 eV detachment energy using velocity mapped imaging. The photoelectron spectrum exhibits bands resulting from transitions to the bound regions of the X 1Sigmag+(0g+), A' 3Piu(2u), A 3Piu(1u), and B 3Piu(0u+) electronic states as well as bands resulting from transitions to the repulsive regions of several I2 electronic states: the B' 3Piu(0u-), B" 1Piu(1u), 3Pig(2g), a 3Pig(1g), 3Pig(0g-), and C 3Sigmau+(1u) states. We simulate the photoelectron spectrum using literature parameters for the I2- and I2 ground and excited states. The photoelectron spectrum includes bands resulting from transitions to several high-lying excited states of I2 that have not been seen experimentally: 3Pig(0g-), 1Pig3(1g), 1 3Sigmag-3(0g+), and the 1Sigmag-3(0u-) states of I2. Finally, the photoelectron spectrum at 5.826 eV allows for the correction of a previous misassignment for the vertical detachment energy of the I2 B 3Piu(0u+) state.  相似文献   

19.
We have studied 3s(n-1 and pi-1) Rydberg states and D0(n-1) and D1(pi-1) cationic states of pyrazine [1,4-diazabenzene] by picosecond (2 + 1) resonance-enhanced multiphoton ionization (REMPI), (2 + 1) REMPI photoelectron imaging, He(I) ultraviolet photoelectron spectroscopy (UPS), and vacuum ultraviolet pulsed field ionization photoelectron spectroscopy (VUV-PFI-PE). The new He(I) photoelectron spectrum of pyrazine in a supersonic jet revealed a considerably finer vibrational structure than a previous photoelectron spectrum of pyrazine vapor. We performed Franck-Condon analysis on the observed photoelectron and REMPI spectra in combination with ab initio density functional theory and molecular orbital calculations to determine the equilibrium geometries in the D0 and 3s(n-1) states. The equilibrium geometries were found to differ slightly between the D0 and 3s states, indicating the influence of a Rydberg electron on the molecular structure. The locations of the D1-D0 and 3s(pi-1)-3s(n-1) conical intersections were estimated. From the line width in the D1 <-- S0 spectrum, we estimated the lifetime of D1 to be 12 fs for pyrazine and 15 fs for fully deuterated pyrazine. A similar lifetime was estimated for the 3s(pi-1) state of pyrazine by REMPI spectroscopy. The vibrational feature of D1 observed in the VUV-PFI-PE measurement differed dramatically from that in the UPS spectrum, which suggests that the high-n Rydberg (ZEKE) states converging to the D1 vibronic state are short-lived due to electronic autoionization to the D0 continuum.  相似文献   

20.
Angle-resolved photoelectron (PE) spectra were recorded for IF and I. These were prepared as primary and secondary products of the F + CH2I2 reaction. PE spectra were recorded with different IF-to-I ratios to evaluate the relative intensities of IF and I photoelectron bands where their bands were overlapped. Improved values were obtained for the vertical and adiabatic ionization energies of the IF(+)(X(2)Pi(3/2)) <-- IF(X(1)sigma(+)) and IF(+)((2)Pi(1/2)) <-- IF(X(1)sigma(+)) ionizations and for the spectroscopic constants omega(e) and omega(e)ex(e) for the two IF ionic states X(2)Pi(3/2) and (2)Pi(1/2). Equilibrium bond lengths r(e) of these IF ionic states were derived from the experimental relative intensities of the vibrational components and calculated Franck-Condon factors. Threshold photoelectron (TPE) spectra were also recorded under the same reaction conditions. On comparing the TPE and PE spectra, the contributions from atomic iodine were much more intense in the TPE spectra. No difference was seen between the vibrational envelopes of the two observed IF bands, and no extra structure was seen associated with the TPE bands of IF as has been observed in TPE spectra of other diatomic halogens. The extra features that were observed in the TPE spectra can be assigned to contributions from autoionization of known I Rydberg states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号