首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Oxygen Rydberg time-of-flight spectroscopy was used to study the vacuum ultraviolet photodissociation dynamics of N(2)O near 130 nm. The O((3)P(J)) products were tagged by excitation to high-n Rydberg levels and subsequently field ionized at a detector. In agreement with previous work, we find that O((3)P(J)) formation following excitation to the repulsive N(2)O D((1)Sigma(+)) state produces the first two electronically excited states of the N(2) counterfragment, N(2)(A (3)Sigma(u) (+)) and N(2)(B (3)Pi(g)). The O((3)P(J)) translational energy distribution reveals that the overall branching ratio between N(2)(A (3)Sigma(u) (+)) and N(2)(B (3)Pi(g)) formation is approximately 1.0:1.0 for J = 1 and 2, with slightly less N(2)(B (3)Pi(g)) produced in coincidence with O((3)P(0)). The angular distributions were found to be independent of J and highly anisotropic, with beta = 1.5+/-0.2.  相似文献   

2.
Two-dimensional photoelectron spectroscopy of hydrogen iodide (HI) has been performed in the photon energy region of 11.10-14.85 eV, in order to investigate dynamical properties on autoionization and neutral dissociation of Rydberg states HI*(RA) converging to HI+(A 2Sigma1/2(+)). A two-dimensional photoelectron spectrum exhibits strong vibrational excitation of HI+(X 2Pi) over a photon energy region from approximately 12 to 13.7 eV, which is attributable to the autoionizing feature of the 5 dpi HI*(RA) state. A noticeable set of stripes in the photon energy region of 13.5-14.5 eV is assigned as resulting from autoionization of the atomic Rydberg states of I* converging to I+ (3P0 or 3P1). The formation of I* is understood in terms of predissociation of multiple HI*(RA) states by way of the repulsive Rydberg potential curves converging to HI+(4Pi1/2).  相似文献   

3.
The photodissociation dynamics of allyl chloride at 235 nm producing atomic Cl((2)P(J);J=1/2,3/2) fragments is investigated using a two-dimensional photofragment velocity ion imaging technique. Detection of the Cl((2)P(1/2)) and Cl((2)P(3/2)) products by [2+1] resonance enhanced multiphoton ionization shows that primary C-Cl bond fission of allyl chloride generates 66.8% Cl((2)P(3/2)) and 33.2% Cl((2)P(1/2)). The Cl((2)P(3/2)) fragments evidenced a bimodal translational energy distribution with a relative weight of low kinetic energy Cl((2)P(3/2))/high kinetic energy Cl((2)P(3/2)) of 0.097/0.903. The minor dissociation channel for C-Cl bond fission, producing low kinetic energy chlorine atoms, formed only chlorine atoms in the Cl((2)P(3/2)) spin-orbit state. The dominant C-Cl bond fission channel, attributed to an electronic predissociation that results in high kinetic energy Cl atoms, produced both Cl((2)P(1/2)) and Cl((2)P(3/2)) atomic fragments. The relative branching for this dissociation channel is Cl((2)P(1/2))/[Cl((2)P(1/2))+Cl((2)P(3/2))]=35.5%. The average fraction of available energy imparted into product recoil for the high kinetic energy products was found to be 59%, in qualitative agreement with that predicted by a rigid radical impulsive model. Both the spin-orbit ground and excited chlorine atom angular distributions were close to isotropic. We compare the observed Cl((2)P(1/2))/[Cl((2)P(1/2))+Cl((2)P(3/2))] ratio produced in the electronic predissociation channel of allyl chloride with a prior study of the chlorine atom spin-orbit states produced from HCl photodissociation, concluding that angular momentum recoupling in the exit channel at long interatomic distance determines the chlorine atom spin-orbit branching.  相似文献   

4.
We present velocity map images of the NO, O((3)P(J)) and O((1)S(0)) photofragments from NO(2) excited in the range 7.6 to 9.0 eV. The molecule was initially pumped with a visible photon between 2.82-2.95 eV (440-420 nm), below the first dissociation threshold. A second ultraviolet laser with photon energies between 4.77 and 6.05 eV (260-205 nm) was used to pump high-lying excited states of neutral NO(2) and/or probe neutral photoproducts. Analysis of the kinetic energy release spectra revealed that the NO photofragments were predominantly formed in their ground electronic state with little kinetic energy. The O((3)P(J)) and O((1)S(0)) kinetic energy distributions were also dominated by kinetically 'cold' fragments. We discuss the possible excitation schemes and conclude that the unstable photoexcited states probed in the experiment were Rydberg states coupled to dissociative valence states. We compare our results with recent time-resolved studies using similar excitation and probe photon energies.  相似文献   

5.
The photoionization efficiency (PIE) spectra of metastable sulfur (S) atoms in the 1 D and 1 S states have been recorded in the 73 350-84 950 cm(-1) frequency range by using a velocity-mapped ion imaging apparatus that uses a tunable vacuum ultraviolet laser as the ionization source. The S(1 D) and S(1 S) atoms are produced by the 193 nm photodissociation of CS2. The observed PIE spectra of S(1 D) and S(1 S) shows 35 autoionizing resonances with little or no contribution from direct photoionization into the S+(4S 3/2)+e(-) ionization continuum. Velocity-mapped ion images of the S+ at the individual autoionizing Rydberg resonances are used to distinguish whether the lower state of the resonance originates from the 1 D, 1 S, or 3P states. The analysis and assignment of the Rydberg peaks revealed 22 new Rydberg states that were not previously known. The autoionization lifetimes tau of the Rydberg states are derived from the linewidths by fitting the lines with the Fano formula. Deviations from the scaling law of tau(n*) proportional to, n*3, where n* is the effective quantum number of the Rydberg state, are observed. This observation is ascribed to perturbations by nearby triplet Rydberg states, which shorten the autoionization lifetimes of the singlet Rydberg levels.  相似文献   

6.
The photoexcitation of NO embedded in superfluid Hen nanodroplets having n approximately 10(4) has been examined. Two-photon excitation prepares electronically excited states (NO(*)), most notably, the embedded analog of the A 2Sigma state of gas phase NO. Vertical excitation to this low Rydberg state is blueshifted and broadened relative to its gas phase counterpart because of the repulsive electron-helium interaction. Transport to the droplet surface is believed to be facile in the superfluid. For example, NO* prefers (energetically) to reside at the droplet surface rather than at the droplet center, in contrast to NO. Photoionization of surface-bound NO* occurs over a significant photon energy range. This yields small cluster ions NO+Hek) with approximately 90% of these clusters having k< or =10. The variation of ion yield with photon energy displays a precipitous change in the region of 24 300-24 400 cm(-1) for all values of k. Possible photoionization mechanisms are discussed and it is suggested that intermediate levels with high-n Rydberg character play a role. This work underscores the important role played by transport in the photophysics of species embedded in the superfluid host.  相似文献   

7.
Ion imaging methods have enabled identification of three mechanisms by which (79)Br(+) and (35)Cl(+) fragment ions are formed following one-color multiphoton excitation of BrCl molecules in the wavelength range 324.6 > lambda > 311.7 nm. Two-photon excitation within this range populates selected vibrational levels (v'= 0-5) of the [X (2)Pi(1/2)]5ssigma Rydberg state. Absorption of a third photon results in branching between (i) photoionization (i.e. removal of the Rydberg electron-a traditional 2 + 1 REMPI process) and (ii)pi*<--pi excitation within the core, resulting in formation of one or more super-excited states with Omega= 1 and configuration [A (2)Pi(1/2)]5ssigma. The fate of the latter states involves a further branching. They can autoionize (yielding BrCl(+)(X (2)Pi) ions in a wider range of v(+) states than formed by direct 2 + 1 REMPI). Further, one-photon absorption by the parent ions resulting from direct ionization or autoionization leads to formation of Br(+) and (energy permitting) Cl(+) fragment ions. Alternatively, the super-excited molecules can fragment to neutral atoms, one of which is in a Rydberg state. Complementary ab initio calculations lead to the conclusion that the observed [Cl**[(3)P(J)]4s + Br/Br*] products result from direct dissociation of the photo-prepared super-excited states, whereas [Br**[(3)P(J)]5p + Cl/Cl*] product formation involves interaction between the [A (2)Pi(1/2)]5ssigma and [X (2)Pi(1/2)]5psigma Rydberg potentials at extended Br-Cl bond lengths. Absorption of one further photon by the resulting Br** and Cl** Rydberg atoms leads to their ionization, and thus their appearance in the Br(+) and Cl(+) fragment ion images.  相似文献   

8.
Multireference spin-orbit configuration interaction calculations have been carried out for the valence and low-lying Rydberg states of CH(3)I. Potential energy surfaces along the C-I dissociation coordinate (minimal energy paths with respect to the umbrella angle) have been obtained as well as transition moments for excitation of the Rydberg states. It is shown that the B and C absorption bands of CH(3)I are dominated by the perpendicular (3)R(1),(1)R?(E)←X??A(1) transitions, while the (3)R(2)(E),?(3)R(0(+) )(A(1))←X??A(1) transitions are very weak. It is demonstrated that the bound Rydberg states of the B and C bands are predissociated due to the interaction with the repulsive E and A(2) components of the (3)A(1) state, with the (3)A(1)(E) state being the main decay channel. It is predicted that the only possibility to obtain the I((2)P(3/2)) ground state atoms from the CH(3)I photodissociation in the B band is by interaction of the (3)R(1)(E) state with the repulsive (1)Q(E) valence state at excitation energies above 55,000 cm(-1). The calculated ab initio data are used to analyze the influence of the Rydberg state vibrational excitation on the decay process. It is shown that, in contrast to intuition, excitation of the ν(3) C-I stretching mode supresses the predissociation, whereas the ν(6) rocking vibration enhances the predissociation rate.  相似文献   

9.
Ab initio electronic structure calculations of a relatively large number of Rydberg states of the CH radical were carried out employing the multireference single and double excitation configuration interaction (MRD-CI) method. A Gaussian basis set of cc-pV5Z quality augmented with 12 diffuse functions was used together with an extensive treatment of electron correlation. The main focus of this contribution is to investigate the 3d Rydberg complex assigned by Watson [Astrophys. J. 555, 472 (2001)] to three unidentified interstellar bands. The authors' calculations reproduce quite well the absolute excitation energies of the three components of the 3d complex, i.e., 2Sigma+(3dsigma), 2Pi(3dpi), and 2Delta(3ddelta), but not the energy ordering inferred from a rotational assignment of the 3d<--X 2Pi laboratory spectrum. The computation of the 4d complex is reported for the first time along with a number of other higher lying Rydberg species with an X 1Sigma+ core. The lowest Rydberg states belonging to series converging to the a 3Pi and A 1Pi excited states of CH+ are also calculated.  相似文献   

10.
The dissociation of OCS has been investigated subsequent to excitation at 248 nm using velocity map ion imaging. Speed distributions, speed dependent translational anisotropy parameters, and the atomic angular momentum orientation and alignment are reported for the channel leading to S((3)P(J)). The speed distributions and beta parameters are in broad agreement with previous work and show behavior that is highly sensitive to the S-atom spin-orbit state. The data are shown to be consistent with the operation of at least two triplet production mechanisms. Interpretation of the angular momentum polarization data in terms of an adiabatic picture has been used to help identify a likely dissociation pathway for the majority of the S((3)P(J)) products, which strongly favors production of J=2 fragment atoms, correlated, it is proposed, with rotationally hot and vibrationally cold CO cofragments. For these fragments, optical excitation to the 2 (1)A(') surface is thought to constitute the first step, as for the singlet dissociation channel. This is followed by crossing, via a conical intersection, to the ground 1 (1)A(') state, from where intersystem crossing occurs, populating the 1 (3)A(')1 (3)A(")((3)Pi) states. The proposed mechanism provides a qualitative rationale for the observed spin-orbit populations, as well as the S((3)P(J)) quantum yield and angular momentum polarization. At least one other production mechanism, leading to a more statistical S-atom spin-orbit state distribution and rotationally cold, vibrationally hot CO cofragments, is thought to involve direct excitation to either the (3)Sigma(-) or (3)Pi states.  相似文献   

11.
Siglow K  Neusser HJ 《Faraday discussions》2000,(115):245-57; discussion 303-30
Using sub-Doppler double resonance excitation with Fourier-transform limited laser pulses and pulsed field ionization techniques we were able to resolve individual high n Rydberg states (45 < n < 110) below and above the lowest ionization energy of van der Waals clusters of benzene with the noble gases neon and argon. By choosing various selected J'K' intermediate rotational states we detected and assigned several Rydberg series with nearly vanishing quantum defect. They converge to different limits representing the rotational states in the vibrational states of the cluster cation. Even far above the ionization threshold sharp high-n Rydberg states with a width of 750 MHz are observed converging to intramolecular vibrational states located up to 800 cm-1 above the dissociation threshold of the cluster ion. This points to a slow dissociation rate of the cluster ion in the range of 3 x 10(5) s-1 < k < 5 x 10(8) s-1. In further studies single high Rydberg states of benzonitrile, a polyatomic molecule with an high dipole moment of 4.18 D, were detected in the range from n = 50 to 100. We plan to investigate the influence of the strong anisotropic dipole field of this molecule on the coupling between the high Rydberg electron and the molecular core.  相似文献   

12.
Ultraviolet (UV) photodissociation dynamics of jet-cooled SH radical (in X 2pi(3/2), nu"=0-2) is studied in the photolysis wavelength region of 216-232 nm using high-n Rydberg atom time-of-flight technique. In this wavelength region, anisotropy beta parameter of the H-atom product is approximately -1, and spin-orbit branching fractions of the S(3P(J)) product are close to S(3P2):S(3P1):S(3P0)=0.51:0.36:0.13. The UV photolysis of SH is via a direct dissociation and is initiated on the repulsive 2sigma- potential-energy curve in the Franck-Condon region after the perpendicular transition 2sigma(-)-X 2pi. The S(3P(J)) product fine-structure state distribution approaches that in the sudden limit dissociation on the single repulsive 2sigma- state, but it is also affected by the nonadiabatic couplings among the repulsive 4sigma-, 2sigma-, and 4pi states, which redistribute the photodissociation flux from the initially excited 2sigma- state to the 4sigma- and 4pi states. The bond dissociation energy D0(S-H)=29,245+/-25 cm(-1) is obtained.  相似文献   

13.
The photoionization efficiency (PIE) and pulsed field ionization-photoion (PFI-PI) spectra for sulfur atoms S(3P2,1,0) and S(1D2) resulting from the 193.3 nm photodissociation of CS2 have been measured using tunable vacuum ultraviolet (vuv) laser radiation in the frequency range of 82 750-83 570 cm(-1). The PIE spectrum of S(3P2,1,0) near their ionization threshold exhibits steplike structures. On the basis of the velocity-mapped ion-imaging measurements, four strong autoionizing peaks observed in the PIE measurement in this frequency range have been identified to originate from vuv excitation of S(1D2). The PFI-PI measurement reveals over 120 previously unidentified new Rydberg lines. They have been assigned as Rydberg states [3p3(4S composite function nd3 D composite function (n=17-64)] converging to the ground ionic state S+(4S composite function) formed by vuv excitations of S(3P2,1,0). The converging limits of these Rydberg series have provided more accurate values, 82 985.43+/-0.05, 83 162.94+/-0.05, and 83 559.04+/-0.05 cm(-1) for the respective ionization energies of S(3P0), S(3P1), and S(3P2) to form S+(4S composite function). The relative intensities of the PFI-PI bands for S(3P0), S(3P1), and S(3P2) have been used to determine the branching ratios for these fine structure states, S(3P0):S(3P1):S(3P2)=1.00:1.54:3.55, produced by photodissociation of CS2 at 193.3 nm.  相似文献   

14.
The photodissociation and photoionization dynamics of HBr via low-n Rydberg and ion-pair states was studied by using 2 + 1 REMPI spectroscopy and velocity map imaging of photoelectrons. Two-photon excitation at about 9.4-10 eV was used to prepare rotationally selected excited states. Following absorption of the third photon the unperturbed F (1)Delta(2) and i (3)Delta(2) states ionize directly into the ground vibrational state of the molecular ion according to the Franck-Condon principle and upon preservation of the ion core. In case of the V (1)Sigma(+)(0(+)) ion-pair state and the perturbed E (1)Sigma(+)(0(+)), g (3)Sigma(-)(0(+)), and H (1)Sigma(+)(0(+)) Rydberg states the absorption of the third photon additionally results in a long vibrational progression of HBr(+) in the X (2)Pi state as well as formation of electronically excited atomic photofragments. The vibrational excitation of the molecular ion is explained by autoionization of repulsive superexcited states into the ground state of the molecular ion. In contrast to HCl, the perturbed Rydberg states of HBr show strong participation of the direct ionization process, with ionic core preservation.  相似文献   

15.
DCl(+)(X (2)Pi(32),v(+")=0) cations have been prepared by 2+1 resonance enhanced multiphoton ionization, and their subsequent fragmentation following excitation at numerous wavelengths in the range of 240-350 nm studied by velocity map imaging of the resulting Cl(+) products. This range of excitation wavelengths allows selective population of A (2)Sigma(+) state levels with all vibrational (v(+')) quantum numbers in the range 0< or =v(+')< or =15. Image analysis yields wavelength dependent branching ratios and recoil anisotropies of the various D+Cl(+) ((3)P(J), (1)D, and (1)S) product channels. Levels with 10< or =v(+')< or =15 have sufficient energy to predissociate, forming D+Cl(+)((3)P(J)) products with perpendicular recoil anisotropies-consistent with the A (2)Sigma(+)<--X (2)Pi parent excitation and subsequent fragmentation on a time scale that is fast compared with the parent rotational period. Branching into the various spin-orbit states of the Cl(+)((3)P(J)) product is found to depend sensitively upon v(+') and, in the case of the v(+')=13 level, to vary with the precise choice of excitation wavelength within the A (2)Sigma(+)<--X (2)Pi(13,0) band. Such variations have been rationalized qualitatively in terms of the differing contributions made to the overall predissociation rate of DCl(+)(A,v(+')) molecules by coupling to repulsive states of (4)Pi, (4)Sigma(-), and (2)Sigma(-) symmetries, all of which are calculated to cross the outer limb of the A (2)Sigma(+) state potential at energies close to that of the v(+')=10 level. Cl(+)((3)P(J)) fragments are detected weakly following excitation to A (2)Sigma(+) state levels with v(+')=0 or 1, Cl(+)((1)D) fragments dominate the ion yield when exciting via 2< or =v(+')< or =6 and via v(+')=9, while Cl(+)((1)S) fragments dominate the Cl(+) images obtained when exciting via levels with v(+')=7 and 8. Analysis of wavelength resolved action spectra for forming these Cl(+) ions and of the resulting Cl(+) ion images shows that (i) these ions all arise via two photon absorption processes, resonance enhanced at the one photon energy by the various A(v(+')<10) levels, (ii) the first A (2)Sigma(+)<--X (2)Pi absorption step is saturated under the conditions required to observe significant two photon dissociation, and (iii) the final absorption step from the resonance enhancing A(v(+')) level involves a parallel transition.  相似文献   

16.
Amplified spontaneous emission (ASE) from single rovibrational levels of valence (non-Rydberg) states of NO molecules has been investigated. The B2Pi (v=24 and 25), L2Pi (v=5 and 6), and I2Sigma+ (v=6) levels have been populated through laser optical-optical double resonance excitation via the Rydberg A2Sigma+ state. Term values for the 2Pi states have been determined with an accuracy of +/-0.03 cm(-1). Analyses of rotationally resolved dispersed ASE spectra in the near infrared region have shown that all the lower states belonged to the Rydberg states. The valence approximately Rydberg coupling in the upper manifolds has driven ASE systems from the valence to the Rydberg levels where they benefit from the strong intensities of inter-Rydberg transitions with Deltav=0. The experimentally predicted valence approximately Rydberg interactions have been compared with theoretical treatments.  相似文献   

17.
A recent review (Ashfold et al., Phys. Chem. Chem. Phys., 2010, 12, 1218) highlighted the important role of dissociative excited states formed by electron promotion to σ* orbitals in establishing the photochemistry of many molecular hydrides. Here we extend such considerations to molecular halides, with a particular focus on iodobenzene. Two experimental techniques (velocity mapped ion imaging (VMI) and time resolved infrared (IR) diode laser absorption) and electronic structure calculations have been employed in a comprehensive study of the near ultraviolet (UV) photodissociation of gas phase iodobenzene molecules. The VMI studies yield the speeds and angular distributions of the I((2)P(3/2)) and I*((2)P(1/2)) photofragments formed by photolysis in the wavelength range 330 ≥λ≥ 206 nm. Four distinct dissociation channels are observed for the I((2)P(3/2)) atom products, and a further three channels for the I*((2)P(1/2)) fragments. The phenyl (Ph) radical partners formed via one particular I* product channel following excitation at wavelengths 305 ≥λ≥ 250 nm are distributed over a sufficiently select sub-set of vibrational (v) states that the images allow resolution of specific I* + Ph(v) channels, identification of the active product mode (ν(10), an in-plane ring breathing mode), and a refined determination of D(0)(Ph-I) = 23,390 ± 50 cm(-1). The time-resolved IR absorption studies allow determination of the spin-orbit branching ratio in the iodine atom products formed at λ = 248 nm (?(I*) = [I*]/([I] + [I*]) = 0.28 ± 0.04) and at 266 nm (?(I*) = 0.32 ± 0.05). The complementary high-level, spin-orbit resolved ab initio calculations of sections (along the C-I bond coordinate) through the ground and first 19 excited state potential energy surfaces (PESs) reveal numerous excited states in the energy range of current interest. Except at the very shortest wavelength, however, all of the observed I and I* products display limiting or near limiting parallel recoil anisotropy. This encourages discussion of the fragmentation dynamics in terms of excitation to states of A(1) total symmetry and dissociation on the 2A(1) and 4A(1) (σ* ← n/π) PESs to yield, respectively, I and I* products, or via non-adiabatic coupling to other σ* ← n/π PESs that correlate to these respective limits. Similarities (and differences) with the available UV photochemical data for the other aryl halides, and with the simpler (and more thoroughly studied) iodides HI and CH(3)I, are summarised.  相似文献   

18.
The partial photoionization cross sections and asymmetry parameters of S atoms have been measured using constant-ionic-state (CIS) spectroscopy in the photon energy range 10.0-30.0 eV. The ionizations investigated in these CIS experiments are the (3p)(-1) ionizations S(+)((4)S)<--S((3)P), S(+)((2)D)<--S((3)P), and S(+)((2)P)<--S((3)P). For the first time Rydberg series which converge to the fourth ionization limit have been observed and assignments of these series have been proposed. These correspond to excitations to Rydberg states that are parts of series which converge to the fourth ionization limit, S(+)((4)P)<--S((3)P) (3s)(-1), and autoionize to the lower S(+)((4)S), S(+)((2)D), or S(+)((2)P) states. For each series observed in the CIS spectra photoelectron angular distribution studies, combined with other evidence, has allowed the angular momentum character of the free electron on autoionization to be determined.  相似文献   

19.
Potential energy surfaces for all Born-Oppenheimer electronic states of IBr molecule correlating to the neutral (2)P ((2)P(3/2) and (2)P(1/2)) iodine and bromine are calculated for the first time. Electric dipole and polarizability curves (static and transition) are also determined. Calculations include scalar and spin-orbit relativistic effects within all-electron Douglas-Kroll two-component Hamiltonian. Electron correlation is treated with quasi-degenerate multi-reference second-order perturbation theory. Seven adiabatic electronic states (X (1)Sigma(+), A'(3)Pi(2), A (3)Pi(1), 1 (3)Pi(0-), B (3)Pi(0+), B'(3)Sigma, and 2 (3)Pi(0+)) exhibit significant covalent bonding, and can support vibrational states. Calculated spectroscopic parameters agree with experiment to better than 1000 cm(-1) (T(e)), 10 cm(-1) (omega(e)), and 0.05 Angstrom (r(e)). A new 1 (3)Pi(0-) state correlating to ground-state atoms is predicted at T(e) approximately 14 000 cm(-1), omega(e) approximately 80 cm(-1), and r(e) approximately 3.0 Angstrom. The second new state (2 (3)Pi(0+)) correlates to excited iodine atom, with T(e) approximately 20 000 cm(-1), omega(e) approximately 115 cm(-1), and r(e) approximately 3.3 Angstrom. Non-adiabatic coupling parameters are calculated for the four avoided crossings, which arise due to electronic spin-orbit interaction. Estimated parameters of the B (3)Pi(0+)/B'(3)Sigma crossing (R(c) approximately 3.32 Angstrom; V approximately 120 cm(-1)) agree with experimental values. The previously unsuspected 2 (3)Pi(0-)/1 (1)Sigma(-) crossing of two repulsive surfaces provides a new collisional deactivation channel for Br* atoms at relative velocities above 1000 m s(-1). Several repulsive states (including 1 (1)Pi(1) and 2 (3)Pi(1)) intersect the B/B' system near the avoided crossing point, and may affect dynamics of IBr in strong laser fields.  相似文献   

20.
Neutral superexcited states in molecular oxygen converging to the O(2)(+) c (4)Σ(u)(-) ion state are excited and probed with femtosecond time-resolved photoelectron spectroscopy to investigate predissociation and autoionization relaxation channels as the superexcited states decay. The c (4)Σ(u)(-) 4sσ(g) v=0, c (4)Σ(u)(-) 4sσ(g) v=1, and c (4)Σ(u)(-) 3dσ(g) v=1 superexcited states are prepared with pulsed high-harmonic radiation centered at 23.10 eV. A time-delayed 805 nm laser pulse is used to probe the excited molecular states and neutral atomic fragments by ionization; the ejected photoelectrons from these states are spectrally resolved with a velocity map imaging spectrometer. Three excited neutral O* atom products are identified in the photoelectron spectrum as 4d(1)?(3)D(J)°, 4p(1) (5)P(J)° and 3d(1) (3)D(J)° fragments. Additionally, several features in the photoelectron spectrum are assigned to photoionization of the transiently populated superexcited states. Using principles of the ion core dissociation model, the atomic fragments measured are correlated with the molecular superexcited states from which they originate. The 4d(1) (3)D(J)° fragment is observed to be formed on a timescale of 65 ± 5 fs and is likely a photoproduct of the 4sσ(g) v = 1 state. The 4p(1) (5)P(J)° fragment is formed on a timescale of 427 ± 75 fs and correlated with the neutral predissociation of the 4sσ(g) v = 0 state. The timescales represent the sum of predissociation and autoionization decay rates for the respective superexcited state. The production of the 3d(1) (3)D(J)° fragment is not unambiguously resolved in time due to an overlapping decay of a v = 1 superexcited state photoelectron signal. The observed 65 fs timescale is in good agreement with previous experiments and theory on the predissociation lifetimes of the v = 1 ion state, suggesting that predissociation may dominate the decay dynamics from the v = 1 superexcited states. An unidentified molecular state is inferred by the detection of a long-lived depletion signal (reduction in autoionization) associated with the B (2)Σ(g)(-) ion state that persists up to time delays of 105 ps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号