首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 833 毫秒
1.
Isothermal frontal polymerization is a directional polymerization that utilizes the Norish‐Trommsdorff (gel) effect to produce optical gradient materials. When a solution of methyl methacrylate and thermal initiator contacts a polymer seed (a small piece of poly(methyl methacrylate), a viscous region is formed in which the polymerization rate is faster than in the bulk solution. We obtained definitive evidence of the isothermal nature of the process by placing thermocouples above the propagating front. Using the optical technique of laser line deflection (Weiner's method), we studied the front propagation to determine the induction period, and the maximum distance propagated as a function of the molecular weight of the seed. We determined that the polymer seed must have a minimum molecular weight to initiate a front. We also determined that oxygen would act as a bulk polymerization inhibitor and increase the front propagation distance, but after purging the monomer–initiator solution with oxygen for several hours, the distance was shortened. We ascribed this behavior to the formation of peroxy radicals from the slow decomposition of the initiator and subsequent reaction with oxygen. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3601–3608, 2006  相似文献   

2.
Traveling polymerization fronts in unstirred solutions of methylmethacrylate, methacrylic acid, or acrylamide with some free radicals initiators (through thermal decomposition) have been observed experimentally. A local heating of the initial reactant mixture, under suitable conditions, leads to a reaction front that propagates along the space coordinate with a constant velocity. In this article, a physical interpretation of this phenomenon is provided through a mathematical model that accounts for the depolimerization reaction and is based on the constant pattern approach. Moreover, an approximate explicit analytic expression for the velocity of propagation of the polymerization front is proposed. The theoretical values are compared with those measured experimentally as a function of the initiator concentration for different addition polymerization systems. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35:1047–1059, 1997  相似文献   

3.
Frontal Polymerization is a process that converts monomers into polymers by means of a propagating spatially localized reaction front. Such fronts exist with free-radical polymerization, where in the simplest case, a mixture of monomers and initiator is placed into a test tube and upon initiation of the reaction at one end of the tube, a self-sustained wave develops and propagates through the tube. Isothermal Frontal Polymerization (IFP), often referred to as interfacial gel polymerization, occurs due to the coupling of mass diffusion of the species and the gel effect. Utilizing the free volume theory of Vrentas and Duda for describing the self-diffusive behavior of the gel effect, we mathematically model and study this IFP process. We determine, both numerically and analytically, characteristics of the process including the propagation velocity of the reaction zone, the structure of the wave, and the distance traveled by the front before it breaks down due to reactions ahead of the front  相似文献   

4.
A mathematical model for inverse microemulsion polymerization has been developed. The model has been used to fit experimental results of the effect of initiator concentration, light intensity, emulsifier concentration, and dispersed phase weight fraction on the monomer conversion evolution, particle size, and polymer molecular weight in the inverse microemulsion polymerization of 2-methacryloyl oxyethyl trimethyl ammonium chloride (MADQUAT) initiated by UV light in the presence of AIBN. A good fitting of the experimental data was achieved. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2167–2178, 1999  相似文献   

5.
The precipitation polymerization of acrylic acid in supercritical carbon dioxide was studied in a continuous stirred tank reactor with 2,2′‐azobis(2,4‐dimethylvaleronitrile) as the free‐radical initiator. The reactor temperature was between 50 and 90 °C, the pressure was 207 bar, and the average residence time was between 12 and 40 min. The product polymer was a white, dry, fine powder that dissolved in water. A wide range of polymer molecular weights (5–200 kg/mol) was obtained. The effects of the operating variables on the polymerization rate and on the polymer molecular weight were evaluated. The observed kinetics suggested that polymerization took place in both the supercritical fluid and the precipitated polymer particles. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2546–2555, 2005  相似文献   

6.
This article first reports a fast and controlled living radical polymerization (LRP) of acrylonitrile, evidenced by 81.3% monomer conversion within 40 min and well‐defined the polymers with a narrow polydispersity index (PDI) range of 1.14?1.38. This was achieved by utilizing azobis(isobutyronitrile) as radical initiator with a high concentration up to 190 mM and CuBr2 as catalyst with a very low concentration down to 50 ppm. The polymerization displayed typical LRP characteristics, including pseudo first‐order kinetics of polymerization, the linear increase of number‐average molecular weights (MWs), low PDI values. The influence of various experimental components, radical initiator concentration, catalyst concentration, and reaction temperature, on the polymerization reaction and MW as well as PDI has been investigated in detail. 1H NMR and gel permeation chromatography analyses as well as chain extension reaction confirmed the very high chain‐end functionality of the resultant polymer. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
Initiators for continuous activator regeneration atom transfer radical polymerization technique was first accessed to acrylonitrile by using CuBr2/2,2′‐bipyridine as the catalyst, ethyl 2‐bromoisobutyrate as the halogen initiator, and azobis(isobutyronitrile) as the free radical initiator. The key to success is ascribed to the facile achievement of the rapid equilibrium between active species and dormant species. Effects of ligand, catalyst concentration, free radical initiator concentration, and reaction temperature on the polymerization reaction and molecular weight (MW) as well as polydispersity index (PDI) were investigated in detail. The polymerization proceeded in a controlled/living fashion even though the concentration of copper catalyst decreased to 50 ppm, which is evident in pseudo first‐order kinetics of polymerization, linear increase of molecular weight, low PDI, and high chain‐end functionality of the generated polymer. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
Several properties of propagating fronts of addition polymerization were studied. A power function could be fit to the velocity dependence on initiator concentration, but not with the exponents predicted by current models or in agreement with other published work. Bubbles from the volatile by-products of initiator decomposition were found to affect the front velocity and curvature. The front velocity for triethylene glycol dimethacrylate polymerization was found to depend linearly on temperature over a moderate range. The conversion of methacrylic acid in fronts varied greatly with initiator type and concentration. Benzoyl peroxide produced much lower conversion than t-butyl peroxide, but fronts with tBPO propagated slower. A dual initiator system of BPO and tBPO produced rapidly propagating fronts with good conversion but the contribution of each initiator to the velocity was not additive. The possibility of chain branching was considered. The apparent molecular weight distributions were very broad, often trimodal, and found to depend on initiator type and concentration as well as the tube diameter. The temperature profiles were measured and found to be very sharp for BPO and broader for tBPO but both had front temperatures in excess of 200°C, indicating a high ceiling temperature. © 1995 John Wiley & Sons, Inc.  相似文献   

9.
Hyperbranched polymethacrylates were prepared by means of oxyanionic vinyl polymerization of commercially available monomers, including hydroxyethyl methacrylate (HEMA) and poly(ethylene glycol) methacrylate (PEG‐MA). Hyperbranched polymethacrylates with high molecular weight were obtained with the complex of potassium hydride and 18‐crown‐6 as the initiator. The effect of 18‐crown‐6 is very important, and only oligomer can be obtained in the polymerization without 18‐crown‐6. The molecular structure of the hyperbranched polymers was confirmed with 1H NMR and 13C NMR spectra. The ratio of initiator to monomer significantly affects the architecture of the resultant polymers. When the ratio of initiator to monomer equals 1 in the oxyanionic vinyl polymerization of HEMA, the degree of branching of the resulting polymer was calculated to be around 0.49. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3502–3509, 2005  相似文献   

10.
We report the first synthesis of poly(hydroxyethyl acrylate) (PHEA) without solvent by free‐radical frontal polymerization (FP) at ambient pressure. In a typical run, the appropriate amounts of reactant (hydroxyethyl acrylate) and initiator (1,1‐di(tert‐butylperoxy)‐3,3,5‐trimethylcyclohexane) (Luperox 231) were mixed together at ambient pressure. FP was initiated by heating the wall of the tube with a soldering iron, and the resultant hot fronts were allowed to self‐propagate throughout the reaction vessel. Once initiated, no further energy was required for polymerization to occur. To study the macrokinetics, we also produced PHEA frontally with ammonium persulfate as initiator and dimethyl sulfoxide as the solvent. The dependences of the front velocity and front temperature on the initiator concentration and reactant dilution were investigated. The front temperatures were between 124 and 157 °C, depending on the ammonium persulfate concentration. Thermogravimetric analysis indicates that PHEA prepared by FP with ammonium persulfate as initiator had higher thermal stability than solvent‐free frontally prepared PHEA with Luperox 231 as initiator. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 873–881, 2007  相似文献   

11.
A novel polymer matrix containing amino–nitro substituted azobenzene groups was obtained by frontal polymerization. (E)‐2‐(Ethyl(4‐((4‐nitrophenyl)diazenyl)phenyl)amino)ethyl methacrylate (MDR‐1) was copolymerized with poly(ethylene glycol) diacrylate (PEGDA) using this easy and fast polymerization technique. The effect of the amount of the incorporated azo‐monomer into the polymer matrix was studied in detail and correlated to front velocity, maximum temperature, initiator concentration, and monomer conversion. The obtained materials were characterized by infrared spectroscopy (Fourier transform infrared), and their thermal properties were studied by thermogravimetric analysis and differential scanning calorimetry. Moreover, the optical properties of the polymers were studied by absorption spectroscopy in the UV–Vis region. Absorption spectra of the copolymers exhibit a significant blue shift of the absorption bands with respect to the azo‐monomer, due to the presence of H‐aggregates. Cubic nonlinear optical (NLO) characterizations of the PEGDA/MDR‐1 copolymers were performed according to the Z‐Scan technique. It has been proven that samples with higher MDR‐1 content (0.75 mol %) exhibited outstandingly high NLO‐activity with negative NLO‐refractive coefficients in the promising range of n2 = ?8.057 × 10?4 esu. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
We observed that the velocities of descending thermoset polymerization fronts were strongly affected by the orientation of the tube. The front remained approximately perpendicular to the gravitational vector but propagated almost 1.8 times as fast at 75° along the axis of the tube. We performed a study of the velocity and front‐shape dependence on orientation with propagating fronts of triethylene glycol dimethacrylate with peroxide initiator and acrylamide/bisacrylamide polymerization in dimethyl sulfoxide with persulfate initiator. The percentage increase of velocity was independent of the initiator concentration but strongly dependent on the viscosity. Convection under the front flowed away from the tube wall nearest the vertical axis and was stronger as the angle increased. The front shape also changed, becoming significantly distorted near the wall from which the convection originated. We applied a simple geometric argument to explain the angular dependence for small angles on the basis of the assumption that convection did not affect the velocity of propagation normal to the front. The increase in velocity along the tube axis could be explained by a projection of the normal velocity onto the tube axis, following a 1/cosθ dependence. For higher angles, the convection was not sufficiently strong to maintain a level front. When the difference from a 180° orientation was considered, the velocity dependence exactly followed the geometric relationship. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3504–3508, 2002  相似文献   

13.
Emulsion polymerization of vinylidene chloride was carried out at 50°C using sodium lauryl sulfate as emulsifier and potassium persulfate as initiator, respectively. Contrary to the results so far reported, the stirring rate did not affect the progress of the polymerization and such an abnormal kinetic behavior as the rate of polymerization suddenly drops in the course of polymerization was not observed. The number of polymer particles produced was proportional to the 0.7 power of the concentration of emulsifier forming micelles and to the 0.3 power of the initial initiator concentration, respectively, and was independent of the initial monomer concentration. The rate of polymerization was in proportion to the 0.3 power of the concentration of emulsifier forming micelles, to the 0.5 power of the initial initiator concentration, to the 0.2 power of the initial monomer concentration, and to the 0.45 power of the number of polymer particles, respectively. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1919–1928, 1998  相似文献   

14.
A mathematical model for seeded emulsion polymerization stabilized with polymerizable surfactants (surfmers) was developed. The model accounts for the main features of the process and provides information about surfmer conversion as well as surfmer burying inside the polymer particles. The model was validated by comparing its predictions with the experimental results for the effect of particle size, surface properties of the surfmer, and type of initiator on surfmer conversion. The effect of surfmer reactivity on surfmer incorporation to the polymer backbone is also discussed. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 585–595, 2001  相似文献   

15.
To control particle diameter and particle diameter distribution in dispersion copolymerization of styrene and sodium polyaspartate macromonomer containing vinylbenzyl pendant groups, effects of some polymerization parameters, water contents, initiator concentration, styrene monomer concentration, reaction temperature, and type of initiator on the particle diameter and the diameter distribution were investigated. Variation of the water contents from 20 to 80 vol % controls the resultant particle diameter from 0.066 to 0.47 μm. The diameter increased with increasing initiator concentration. This tendency is similar to dispersion polymerization system using a nonpolymerizable stabilizer. Particle diameter distribution broadened with increasing styrene monomer concentration. This trend was attributed to the increase of a period of particle formation. This result indicated that the period of particle formation affected the resultant particle diameter distribution. Particle diameter distribution was successfully improved (CV = 9.1 from 23.6%) by shortening of decomposition time of initiator. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2281–2288, 2009  相似文献   

16.
Living anionic surface‐initiated polymerization on flat gold substrates has been conducted to create uniform homopolymer and diblock copolymer brushes. A 1,1‐diphenylethylene (DPE) self‐assembled monolayer was used as the immobilized precursor initiator. n‐BuLi was used to activate the DPE in tetrahydrofuran at –78 °C to initiate the polymerization of different monomers (styrene, isoprene, ethylene oxide, and methyl methacrylate). Poly(styrene) (PS) and poly(ethylene oxide) (PEO) in particular were first investigated as grafted homopolymers, followed by their copolymers, including poly(isoprene)‐b‐poly(methylmethacrylate) (PI‐b‐PMMA). A combined approach of spectroscopic (Fourier transform infrared spectroscopy, surface plasmon spectroscopy, ellipsometry, X‐ray photoelectron spectroscopy) and microscopic (atomic force microscopy) surface analysis was used to investigate the formation of the polymer brushes in polar solvent media. The chemical nature of the outermost layer of these brushes was studied by water contact angle measurements. The effect of the experimental conditions (solvent, temperature, initiator concentration) on the surface properties of the polymer brushes was also investigated. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 769–782, 2006  相似文献   

17.
We report the first synthesis of urethane–acrylate copolymers via free‐radical frontal polymerization. In a typical run, the appropriate amounts of the reactants (urethane–acrylate macromonomer and 2‐hydroxyethyl acrylate) and initiator (ammonium persulfate) were dissolved in dimethyl sulfoxide. Frontal polymerization was initiated by the heating of the wall of the tube with a soldering iron, and the resultant hot fronts were allowed to self‐propagate throughout the reaction vessel. Once it was initiated, no further energy was required for the polymerization to occur. The dependence of the front velocity and front temperature on the initiator concentration was investigated. The front temperatures were between 55 and 65 °C, depending on the persulfate concentration. Thermogravimetric analysis indicated that the urethane–acrylate copolymers had higher thermal stability than pure frontally prepared polyurethane. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3018–3024, 2006  相似文献   

18.
Polymerization of acrylamide (M) in the presence of ultrasound and peroxomonosulfate (PMS) was carried out for the first time for various concentration ranges of monomer and initiator and various temperatures at a constant frequency of 1 Mhz. The rate of polymerization Rp was found to increase with increase in the concentration of monomer and initiator and found to depend on [M] and [PMS]1/2. The rate of disappearance of initiator (-d[PMS]/dt) was also followed simultaneously under the experimental conditions and found to increase linearly with increase in [PMS]. A probable reaction mechanism was proposed on the basis of the observed results, and the individual rate constant were evaluated. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2715–2719, 1998  相似文献   

19.
Styrene bulk polymerization was conducted at 70 °C with a high initiator concentration, and this ensured that the dominant chain‐stopping mechanism was the combination of free radicals. The evolution of the molecular weight distribution (MWD) of the polymer was measured via the periodic removal of samples during the course of the reaction and their analysis with gel permeation chromatography. The overall termination rate coefficient was independent of the conversion in the dilute regime, as observed from cumulative MWDs. In the middle of the conversion range, the observed trend was compatible with a translational‐diffusion‐controlled mechanism for the termination step. A bimodal distribution of the molecular weights was also found at high conversions and could be explained in terms of an increase in the free‐radical concentration and a very low termination rate coefficient. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 178–187, 2005  相似文献   

20.
The story of the outset of the concept of immortal polymerization is presented. Immortal polymerization is the polymerization that gives polymers with a narrow molecular distribution, even in the presence of a chain transfer reaction, because of its reversibility, which leads to the revival of the polymers once dead, that is, the immortal nature of the polymers. As a result, immortal polymerization can afford polymers with a controlled molecular weight, the number of polymer molecules being more than that of the initiator. The compound that plays a leading role is metalloporphyrin, in which the metal‐axial ligand bond has an unusually high reactivity. Immortal polymerization can be carried out in the ring‐opening polymerizations of epoxides, episulfides, and lactones by the selection of an appropriate metalloporphyrin as the initiator and a protic compound as the chain transfer agent. Immortal polymerization is an effective method for synthesizing end‐functional polymers and oligomers with narrow molecular weight distributions. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2861–2871, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号