首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal conductivity and thermal diffusivity of oil‐palm‐fiber‐reinforced untreated (Sample 1) and differently treated composites were measured with the transient plane source technique at room temperature and under normal pressure. All the composites were 40% oil‐palm fiber by weight. The fibers were treated with alkali (Composite 2), silane (Composite 3), and acetic acid (Composite 4) and reinforced in a phenolformaldehyde matrix. The thermal conductivity and thermal diffusivity of the composites increased after treatment to different extents. The thermal conductivity of the treated fibers as well as of the untreated fibers was calculated theoretically. The model results show that the thermal conductivity of the untreated fiber was smaller than the thermal conductivity of the treated fibers. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 916–921, 2000  相似文献   

2.
To understand the influence to thermal conductivity by bridging in the polymer fibers, the thermal conductivity, and thermal diffusivity of ramie fiber and those bridged by formaldehyde (HCHO) using vapor‐phase method (VP‐HCHO treatment) were investigated in the lower temperature range. The thermal conductivities of ramie fiber with and without VP‐HCHO treatments decreased with decreasing temperature. Thermal diffusivities of ramie fiber with and without VP‐HCHO treatments were almost constant in the temperature range of 250–50 K, and increased by decreasing temperature below 50 K. Thermal conductivity and thermal diffusivity of ramie fiber decreased by VP‐HCHO treatment. The crystallinities and orientation angles of ramie fibers with and without VP‐HCHO treatment were measured using solid state NMR and X‐ray diffraction. These were almost independent of VP‐HCHO treatment. Although tensile modulus decreased slightly by VP‐HCHO treatment, the decrease could not explain the decrease in thermal conductivity and diffusivity with decreasing sound velocity. The decrease of the thermal diffusivity and thermal conductivity by VP‐HCHO treatment suggested the possibility of the reduction of the mean free path of phonon by HCHO in VP‐HCHO treated ramie fiber. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2754–2766, 2005  相似文献   

3.
Viscoelastic behavior at elevated temperatures of high‐density polyethylene and isotactic polypropylene was investigated by using the stress relaxation method. The results are interpreted from the view of an established two‐process model for stress relaxation in semicrystalline polymers. This model is based on the assumption that the stress relaxation can be represented as a superposition of two thermally activated processes acting in parallel. Each process is associated either with the crystal or amorphous phase of a polymer sample. It was found that the temperature dependence of viscosity coefficients and elastic moduli of these two fractions are similar in the two materials. The experimental data was correlated with literature data of α and β processes in polyethylene and polypropylene obtained from dynamic mechanical thermal analysis. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 3239–3246, 2000  相似文献   

4.
The axial and transverse Young's modulus and thermal conductivity of gel and single crystal mat polyethylene with draw ratios λ = 1–350 have been measured from 160 to 360 K. The axial Young's modulus increases sharply with increasing λ, whereas the transverse modulus shows a slight decrease. The thermal conductivity exhibits a similar behavior. At λ = 350, the axial Young's modulus and thermal conductivity are, respectively, 20% and three times higher than those of steel. For this ultradrawn material both the magnitude and the temperature dependence of the axial Young's modulus are close to those of polyethylene crystal. The high values of the axial Young's modulus and thermal conductivity arise from the presence of a large percentage (∼85%) of long needle crystals. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 3359–3367, 1999  相似文献   

5.
Thermal conductivity in polymers has been theoretically and experimentally studied in good detail, but there is a need for more accurate models. Polymeric thermal conductivity exhibits a plateau‐like transition at temperatures around 10 K, which is not well accounted for by existing models. In this work, an empirical model that can predict temperature‐dependent thermal conductivity of amorphous polymers is developed. The model is based on kinetic theory and accounts for three sets of vibrational modes in polymers, and is developed using classical expressions, results of previous simulations, and experimental data. Fundamental material properties like density, monomer molecular weight, and speed of sound are the only input parameters. The model provides estimates for the locations of transitions between different sets of vibrational modes, an upper limit for the thermal conductivity, and temperature‐dependent thermal conductivity, which are in good agreement with experimental data. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1160–1170  相似文献   

6.
A quantitative study was undertaken of the anisotropy of low‐strain mechanical behavior for specially oriented polyethylene with controlled crystalline and lamellar orientation. The samples were prepared by the die drawing of injection‐molded rods of polyethylene and annealing. This produced a parallel lamellar structure for which a simple, three‐dimensional composite laminate model could be used to calculate the expected anisotropy. Experimental data, including X‐ray strain measurements of the lateral crystalline elastic constants, showed good quantitative agreement with the model prediction. The X‐ray strain measurements confirmed that the amorphous regions exert large constraints on the crystalline phase in the lateral directions, where an order of magnitude difference was found between the measured apparent lateral crystalline compliances in the lamellar‐stack sample and the expected values for a perfect crystal. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 755–764, 2000  相似文献   

7.
A continuous zone-drawing/zone-annealing method was applied to poly(ethylene terephthalate) fibers in order to improve their mechanical properties. Apparatus used for this treatment was assembled in our laboratory. The continuous zone-drawing treatment was carried out at a drawing temperature of 103°C under an applied tension of 6.6 MPa to fully orient amorphous chains in the drawing direction without inducing thermal crystallization. The continuous zone-annealing treatment was carried out twice at an annealing temperature of 160°C under 102.2 MPa and at 183°C under 161.1 MPa to crystallize the highly oriented amorphous chains. The fiber was continuously drawn and annealed at a rate of 420 mm/min. The fiber obtained had a birefringence of 0.260, a degree of crystallinity of 55%, a tensile modulus of 18 GPa, and a storage modulus of 21 GPa at 25°C. Despite the large difference in the treating speed between the continuous zone-annealing and zone-annealing, their values are approximately equal to those of the zone-annealed PET fiber that was reported previously. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 473–481, 1998  相似文献   

8.
The effects of heat treatment below the melting point of 3,9‐bis{1,1‐dimethyl‐2[β‐(3‐tert‐butyl‐4‐hydroxy‐5‐methylphenyl)propionyloxy]ethyl}‐2,4,8,10‐tetraoxaspiro[5,5]‐undecane (AO‐80) on the thermal and dynamic mechanical properties and microstructure of chlorinated polyethylene (CPE) filled with vitrified AO‐80 particles were investigated. The initial AO‐80 was a complete crystal, whereas AO‐80 obtained by cooling from its melting state was amorphous. The vitrified AO‐80 particles could crystallize again in a CPE matrix by an annealing treatment, but this crystal was different from the initial AO‐80 in the microstructure. In addition, the incorporation of CPE chains caused a dramatic increase in the modulus. As a result, the AO‐80 crystal particles that contained some CPE chains acted as multifunctional crosslinks, and the CPE/AO‐80 hybrid was found to be a new type of elastomer. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 209–215, 2004  相似文献   

9.
The effect of molecular weight on fiber structure development during the continuous neck‐drawing of the amorphous poly(ethylene terephthalate) (PET) fiber was investigated by fiber temperature measurements and online WAXD analysis. The fiber temperature was also simulated using the energy balance equation. The simulated temperature increased differently with molecular weight immediately after the neck point, while the measured temperature showed no difference. The difference in the simulated temperature was caused by the potential energy increase with increasing molecular weight, which would result in a retardation effect in the initial stage of fiber structure development. Online X‐ray measurements were carried out with a time resolution of 0.5 ± 0.06 ms. A two‐dimensionally ordered mesophase was formed within 1 ms after the neck point and developed into a microfibrillar structure. The time required for the disappearance of the two‐dimensionally ordered structure increased with increasing molecular weight, leading to a retardation effect. No molecular weight dependence was observed in the rate of transformation from the two‐dimensionally ordered structure to the PET crystal. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1653–1665, 2009  相似文献   

10.
The initial stage of fiber structure development in the continuous neck‐drawing of amorphous poly(ethylene terephthalate) fibers was analyzed by in situ wide‐angle X‐ray diffraction, small‐angle X‐ray scattering, and fiber temperature measurements. The time error of the measurements (<600 μs) was obtained by synchrotron X‐ray source and laser irradiation heating. A highly ordered fibrillar‐shaped two‐dimensional (smectic‐like) structure was found to be formed less than 1 ms after necking. By analyzing its (001′) and (002′) diffractions, the length of the structure 60–70 nm were obtained. A three‐dimensionally ordered triclinic crystal began to form with the vanishing of the structure around 1 ms after necking. The amount and size of the crystal were almost saturated within several milliseconds of necking, during which time a mainly exothermic heat of crystallization was also observed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2126–2142, 2008  相似文献   

11.
Conductive polymer composites possessing a low percolation‐threshold concentration as a result of double percolation of a conductive filler and its host phase in an immiscible polymer blend afford a desirable alternative to conventional composites. In this work, blends of high‐density polyethylene (HDPE) and ultrahigh molecular weight polyethylene (UHMWPE) were used to produce ternary composites containing either carbon black (CB), graphite (G), or carbon fiber (CF). Blend composition had a synergistic effect on electrical conductivity, with pronounced conductivity maxima observed at about 70–80 wt % UHMWPE in the CB and G composites. A much broader maximum occurred at about 25 wt % UHMWPE in composites prepared with CF. Optical and electron microscopies were used to ascertain the extent to which the polymers, and hence filler particles, are segregated. Differential scanning calorimetry of the composites confirmed that the constituent polymers are indistinguishable in terms of their thermal signatures and virtually unaffected by the presence of any of the fillers examined here. Dynamic mechanical analysis revealed that CF imparts the greatest stiffness and thermal stability to the composites. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1013–1023, 2002  相似文献   

12.
This article is dedicated to the study of the thermal parameters of composite materials. A nonlinear least‐squares criterion is used on experimental transfer functions to identify the thermal conductivity and the diffusivity of aluminum‐polymer composite materials. The density measurements were achieved to deduce the specific heat and thereafter they were compared to values given by differential scanning calorimetry measurement. The thermal parameters of the composite material polypropylene/aluminum were investigated for the two different types of aluminum filler sizes. The experimental data were compared with several theoretical thermal conductivity prediction models. It was found that both the Agari and Bruggeman models provide a good estimation for thermal conductivity. The experimental values of both thermal conductivity and diffusivity have shown a better heat transport for the composite filled with large particles. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 722–732, 2004  相似文献   

13.
The thermal conductivity of poly(L‐lactic acid) specimens subjected to uniaxial elongational deformations in the rubbery state followed by quenching is investigated experimentally. A novel optical technique known as forced Rayleigh scattering is used to measure two components of the thermal diffusivity tensor as a function of elongation. The component along the direction of elongation increases, while the component in the direction perpendicular to elongation decreases, relative to the equilibrium value. Measurements of the stress at the point of quenching, as well as the density and specific heat capacity, are also reported as a function of elongation. Anisotropy of the thermal conductivity tensor is more than 50% at moderate elongations, and it is found to be a nonlinear function of stress. The latter is in contrast to results found in previous studies where a linear relationship between thermal conductivity anisotropy and stress, or the stress‐thermal rule, has been observed for several amorphous polymer systems. Failure of the stress‐thermal rule is attributed to the presence of semicrystalline domains in the deformed samples. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 547–553  相似文献   

14.
We compute thermal transport coefficients for liquid and glassy water in terms of the vibrations of the quenched liquid. The thermal conductivity and thermal diffusivity are computed for H(2)O and D(2)O at densities from 0.93 to 1.2 g cm(-3). The computed thermal diffusivity of liquid water is in reasonable agreement with measured values and is found to increase with increasing temperature due largely to the thermal accessibility of delocalized librational modes. The influence of structure and density on the thermal conductivity of amorphous ices is investigated. The calculations reveal that density alone is unable to explain the measured thermal conductivity of amorphous ices, particularly low-density amorphous ices, for which the thermal conductivity decreases with increasing temperature near 100 K. To investigate the influence of structure on thermal transport in amorphous ices we have computed the thermal transport coefficients for low-density amorphous ices prepared in two different ways, one formed by quenching the liquid at 0.93 g cm(-3) and the other by distortion of cubic ice at the same density. The computed thermal conductivity of the latter is higher, but the structures of both forms are too disordered for the thermal conductivity to exhibit the unusual variation observed experimentally.  相似文献   

15.
A unique in situ multiaxial deformation device has been designed and built specifically for simultaneous synchrotron small angle X‐ray scattering (SAXS) and wide angle X‐ray scattering (WAXS) measurements. SAXS and WAXS patterns of high‐density polyethylene (HDPE) and HDPE/clay nanocomposites were measured in real time during in situ multiaxial deformation at room temperature and at 55 °C. It was observed that the morphological evolution of polyethylene is affected by the existence of clay platelets as well as the deformation temperature and strain rate. Martensitic transformation of orthorhombic into monoclinic crystal phases was observed under strain in HDPE, which is delayed and hindered in the presence of clay nanoplatelets. From the SAXS measurements, it was observed that the thickness of the interlamellar amorphous region increased with increasing strain, which is due to elongation of the amorphous chains. The increase in amorphous layer thickness is slightly higher for the nanocomposites compared to the neat polymer. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

16.
The morphologies of films blown from a low‐density polyethylene (LDPE), a linear low‐density polyethylene (LLDPE), and their blend have been characterized and compared using transmission electron microscopy, small‐angle X‐ray scattering, infrared dichroism, and thermal shrinkage techniques. The blending has a significant effect on film morphology. Under similar processing conditions, the LLDPE film has a relatively random crystal orientation. The film made from the LDPE/LLDPE blend possesses the highest degree of crystal orientation. However, the LDPE film has the greatest amorphous phase orientation. A mechanism is proposed to account for this unusual phenomenon. Cocrystallization between LDPE and LLDPE occurs in the blowing process of the LDPE and LLDPE blend. The structure–property relationship is also discussed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 507–518, 2002; DOI 10.1002/polb.10115  相似文献   

17.
An ultra high molecular weight polyethylene was irradiated with the electron beam at dose levels ranging from 100 kGY to 1 MGy. The microstructures of the irradiated samples were characterized by FTIR, gel fraction measurement, DSC, and small‐ and wide‐angle X‐ray scattering. For the mechanical properties, a static tensile test and creep experiment were also performed. The crosslinking and the crystal morphology changes were the main microstructural changes to influence the mechanical properties. It was found that 250 kGy appeared to be the optimal dose level to induce crosslinks in the amorphous area and recrystalliztion in the crystal lamellae. At doses above 250 kGy, the electron beam penetrates into the crystal domains, resulting in crosslinks in the crystal domains and reduction in the crystal size and crystallinity. The static mechanical properties (modulus, strength) and the creep resistance were enhanced by the electron beam irradiation. The stiffness rather correlated with the degree of crosslinks while the strength with the crystal morphology. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3019–3029, 2005  相似文献   

18.
The oxygen‐barrier properties of amorphous polyethylene terephthalate‐based copolymers with various acid comonomers were examined. The incorporation of increasing amounts of isophthalate, phthalate, or naphthalate gradually reduced the permeability P toward the low values obtained for the corresponding homopolymers. The permeability of poly(ethylene 3,4′‐bibenzoate) homopolymer was only slightly lower than that of polyethylene terephthalate, and the copolymers correspondingly exhibited a very gradual decrease in P as the amount of 3,4′‐bibenzoate (3,4′BB) increased. In contrast, copolymerization with the linear isomer, 4,4′BB, produced a substantial increase in P. Generally, comonomer affected the solubility S less than the diffusivity D, and therefore changes in P reflected primarily changes in D for the polymers studied. The diffusivity and solubility depended on the copolymer composition in accordance with static and dynamic free‐volume concepts of gas permeability in glassy polymers. The solubility S correlated with the amount of free volume as determined by the glass‐transition temperature. Correlation of the diffusivity D with the magnitude of the subambient γ relaxation identified dynamic free volume with thermally activated conformational changes and segmental motions. Correspondence in the activation energy confirmed the relationship. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1889–1899, 2001  相似文献   

19.
We have developed a pulsed photothermal radiometry technique for determining the thermal diffusivity parallel to the surface of a polymer film that involves flashing a line-shaped laser beam on the surface of the sample at right angle to its length, and monitoring the temperature change with time at a distance from the line source using an infrared detector. Combining this with our previous laser-flash radiometry method for thermal diffusivity measurement perpendicular to the film surface, we can now measure the thermal diffusivity of a polymer film along all directions. These two techniques have been used to study uniaxially and biaxially oriented poly(ethylene terephalate) and uniaxially drawn ultrahigh molecular weight polyethylene films. For uniaxially oriented poly(ethylene terephalate), the thermal diffusivity along the draw direction is substantially higher than that in the transverse direction, which in turn, is slightly higher than that in the thickness direction. For a polyethylene film with a draw ratio of 200, the axial thermal diffusivity is extremely high, being about five times that of stainless steel. The anisotropy of the thermal diffusivity of this film exceeds 90. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 1621–1631, 1997  相似文献   

20.
Polybenzimidazole (PBI) polymers tethered with N‐phenyl 1,2,4‐triazole (NPT) groups were prepared from a newly synthesized aromatic diacid, 3′‐(4‐phenyl‐4H‐1,2,4‐triazole‐3,5‐diyl) dibenzoic acid (PTDBA). The obtained polymers show superior thermal and chemical stability and good solubility in many aprotic solvents. The inherent viscosities of all polymers were around 1 dL/g. They exhibit high thermal stability with initial decomposition temperature ranging from 515 to 530 °C, high glass transition temperature ranging from 375 to 410 °C, and good mechanical properties with tensile stress in the range of 66–98 MPa and modulus 1897–2600 MPa. XRD analysis indicates that these polymers are amorphous in nature. Physicochemical properties such as water and phosphoric acid‐uptake, oxidative stability, and proton conductivity of membranes of these polymers have also been determined. The proton conductivity ranged from 4.7 × 10?3 to 1.8 × 10?2 S cm?1 at 175 °C in dry conditions. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2289–2303, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号