首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The free radical polymerizations of methyl acrylate have been studied under γ‐ray irradiation in the presence of the dithiocarbamates with different N‐groups. The results indicate that the conjugation structure of the N‐group of dithiocarbamate plays an important role in living free radical polymerization. The polymerizations reveal good living characteristics in the presence of dithiocarbamates (benzyl 1H‐imidazole‐1‐carbodithioate, benzyl 1H‐pyrrole‐1‐carbodithioate, benzyl 1H‐indole‐1‐carbodithioate, and benzyl 9H‐carbazole‐9‐carbodithioate) with N‐aryl group. In contrast, the polymerization with benzyl N,N‐diethyldithiocarbamate cannot be controlled, and the obtained polymer has a broad molecular weight distribution or even crosslink occurs. Moreover, polymerization rate is influenced by the conjugation structure of the N‐group of dithiocarbamate, and the aromatic polycyclic structure of the N‐group leads to slow polymerization. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5670–5677, 2004  相似文献   

2.
Fluorescence end‐labeled polystyrene (PS) with heteroaromatic carbazole or indole group were prepared conveniently via reversible addition‐fragmentation chain transfer (RAFT) polymerization using dithiocarbamates, ethyl 2‐(9H‐carbazole‐9‐carbonothioylthio)propanoate (ECCP) and benzyl 2‐phenyl‐1H‐indole‐1‐carbodithioate (BPIC) as RAFT agents. The end functionality of obtained PS with different molecular weights was high. The steady‐state and the time‐resolved fluorescence techniques had been used to study the fluorescence behaviors of obtained end‐labeled PS. The fluorescence of dithiocarbamates resulting PS in solid powder cannot be monitored; however, they exhibited structured absorptions and emissions in solvent DMF and the fluorescence lifetimes of PS had no obvious change with molecular weights increasing. These observations suggested that the polymer chains were possibly stretched adequately in DMF, that is, the fluorescence end group was exposed into solvent molecules and little quenching of excited state occurred upon incorporation into polymer chain. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6198–6205, 2008  相似文献   

3.
This article provides a critical review of the properties, synthesis, and applications of dithiocarbamates Z′Z″NC(=S)SR as mediators in reversible addition‐fragmentation chain transfer (RAFT) polymerization. These are among the most versatile RAFT agents. Through choice of substituents on nitrogen (Z′, Z″), the polymerization of most monomer types can be controlled to provide living characteristics (i.e., low dispersities, high end‐group fidelity, and access to complex architectures). These include the more activated monomers (MAMs; e.g., styrenes and acrylates) and the less activated monomers (LAMs; e.g., vinyl esters and vinylamides). Dithiocarbamates with balanced activity (e.g., 1H‐pyrazole‐1‐carbodithioates) or switchable RAFT agents [e.g., a N‐methyl‐N‐(4‐pyridinyl)dithiocarbamate] allow control MAMs and LAMs with a single RAFT agent and provide a pathway to low‐dispersity poly(MAM)‐block‐poly(LAM). © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 216–227  相似文献   

4.
A new vinyl azide monomer, 2‐chlorallyl azide (CAA), has been synthesized from commercially available reagent in one step. The reversible addition fragmentation chain transfer (RAFT) copolymerization of CAA with methyl acrylate (MA) was carried out at room temperature using a redox initiator, benzoyl peroxide (BPO)/N,N‐dimethylaniline (DMA), in the presence of benzyl 1H‐imidazole‐1‐carbodithioate (BICDT). The polymerization results showed that the process bears the characteristics of controlled/living radical polymerizations, such as the molecular weight increasing linearly with the monomer conversion, the molecular weight distribution being narrow, and a linear relationship existing between ln([M]0/[M]) and the polymerization time. Chain extension polymerization was performed successfully to prepare block copolymer. Furthermore, the azide copolymers were functionalized by CuI‐catalyzed “click” reaction with alkyne‐containing poly(ethylene glycol) (PEG) to yield graft copolymers with hydrophilic PEG side chains. Surface modification of the glass sheet was successfully achieved via the crosslinking reaction of the azide copolymer under UV irradiation at ambient temperature. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1348–1356, 2010  相似文献   

5.
Well‐defined diblock copolymers composed of poly(N‐octylbenzamide) and polystyrene were synthesized by reversible addition‐fragmentation chain transfer (RAFT) polymerization of styrene with a polyamide chain transfer agent (CTA) prepared via chain‐growth condensation polymerization. Synthesis of a dithioester‐type macro‐CTA possessing the polyamide segment as an activating group was unsatisfactory due to side reactions and incomplete introduction of the benzyl dithiocarbonyl unit. On the other hand, a dithiobenzoate‐CTA containing poly(N‐octylbenzamide) as a radical leaving group was easily synthesized, and the RAFT polymerization of styrene with this CTA afforded poly(N‐octylbenzamide)‐block‐polystyrene with controlled molecular weight and narrow polydispersity.

  相似文献   


6.
A series of dodecyl‐based monofunctional trithiocarbonate chain transfer agents (CTAs) were successfully synthesized, toward the reversible addition‐fragmentations chain transfer (RAFT) polymerization of styrene. The CTAs were used as initiators for RAFT polymerization, in the absence of the conventional free radical initiator, at higher temperature. Polystyrene (PS) of narrow polydispersity index (PDI) is synthesized. Subsequently, poly(styrene‐b‐benzyl methacrylate) diblock and poly(styrene‐b‐benzyl methacrylate‐b‐2‐vinyl pyridine) triblock copolymers were synthesized from the PS macro‐RAFT agent by simply heating with the second and third monomer, respectively. These experiments suggest that it should be possible to control the RAFT polymerization initiated by a CTA through the adjustment of the temperature of polymerization in such manner that initiation is tailored to proceed at faster rate (at higher temperature) in comparison to propagation (lower temperature). For the specific CTAs studied in this work, the polymerization rate of styrene was high in the case of the reinitiating cyano (CN)‐substituted group (R group) compared to the other groups studied. The results further show that 4‐cyano pentanoic acid group is superior to the other R groups used for the RAFT polymerization of styrene, especially based on the polydispersity at a given conversion as well as the variation in the expected and experimental number‐average‐molecular weights. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

7.
The living radical polymerization of 4‐acetoxystyrene via the RAFT process has been achieved employing bulk, solution and emulsion techniques. The rate of polymerization was studied between 60°C and 90°C. Increasing the temperature increases the rate of polymerization without affecting the polydispersity. Poly(4‐acetoxystyrene) with narrow polydispersity (1.08) was obtained. Various novel dithiocarboxylic esters and dithiocarbamates were screened as chain‐transfer agents for the RAFT polymerization of 4‐acetoxystyrene. The block copolymerization of poly(4‐acetoxystyrene) with styrene leading to poly(4‐acetoxystyrene)‐block‐polystyrene confirmed the presence of active chain ends in the first block. The acetoxy polymers were hydrolyzed to the corresponding hydroxy polymers under mild basic conditions.  相似文献   

8.
Hydrophilic (co)polymers carrying a thiocarbonyl thio end group such as poly(dimethylaminoethyl methacrylate), poly(ethylene oxide), and poly(ethylene oxide)‐block‐poly(dimethylaminoethyl methacrylate) have been evaluated as precursors of stabilizers in batch ab initio emulsion polymerization of styrene under acidic conditions to form electrosterically stabilized polystyrene latex particles. As a mixture of P(DMAEMA/H+Cl)‐RAFT and PEO‐RAFT failed to give satisfactory results, PEO‐RAFT was used as a control agent for the RAFT polymerization of DMAEMA, and the resulting block copolymer was successfully used in ab initio styrene emulsion polymerization.

  相似文献   


9.
Quite unlike the reported facile ene reactions on the periphery of many related heterocyclic systems, similarly disposed moieties on the periphery of the chromen‐4‐one (=4H‐1‐benzopyran‐4‐one) system fail to undergo an ene reaction and display a rather unusual preference for an overall [1,5] shift of the allylic C‐atom. Thus, heating xylene solutions of 2‐(N‐allylanilino)‐, 2‐(N‐crotylanilino)‐, and 2‐(N‐cinnamylamino)‐substituted (E)‐(oxochromenyl)propenoates 9a – c and 2‐[allyl(benzyl)amino]‐, 2‐[benzyl(crotyl)amino]‐, and 2‐[benzyl(cinnamyl)amino]‐substituted (E)‐(oxochromenyl)propenoates 16a – c in a sealed tube at 220–230° leads to a [1,5] shift of the allylic moieties (allyl, crotyl, cinnamyl), which is followed by intramolecular cyclization involving the N‐atom and the ester function, to give the 3‐allyl‐3‐crotyl‐, and 3‐cinnamyl‐substituted‐1‐phenyl‐ or 1‐benzyl‐2H‐[1]benzopyrano[2,3‐b]pyridine‐2,5(1H)‐diones 10a – c and 17a – c . The anticipated carbonyl–ene reaction in the 2‐(N‐allylanilino)‐, 2‐(N‐crotylanilino)‐, 2‐(N‐cinnamylanilino)‐, 2‐[allyl(benzyl)amino]‐, 2‐[benzyl(crotyl)amino]‐, and 2‐[benzyl(cinnamyl)amino]‐substituted 4‐oxochromene‐3‐carboxaldehydes 8a – c and 15a – c is also not observed, and these molecules remain untransformed under identical conditions. No [1,5] shifts of benzyl, phenyl, or methyl groups are observed, even in the absence of allylic moieties, though facile [1,5]‐H shift occurs in 2‐(benzylamino)‐ and 2‐(phenylamino)‐substituted (E)‐(oxochromenyl)propenoates 23a , b , which is followed by a similar intramolecular cyclization leading to the 2H‐[1]benzopyrano[2,3‐b]pyridine‐2,5(1H)‐diones 24a , b .  相似文献   

10.
A novel dithiocarbamate, 2‐nonyl‐benzoimidazole‐1‐carbodithioic acid benzyl ester ( 1a ), was synthesized and successfully used in RAFT polymerization of styrene in bulk with thermal initiation. The effect of molar ratio of styrene to RAFT agent on the polymerization was investigated. The linear relationship between ln([M]0/[M]) and polymerization time indicated that the polymerization was first‐order with respect to monomer concentration. The molecular weights increased linearly with monomer conversion and were close to corresponding theoretical values. The molecular weight distributions (M w /M n ) kept very narrow (M w /M n <1.1) at a wide range of conversions of 14.2% to 73.3%. The obtained polymer had a strong ultraviolet absorption at 329 nm, which indicated that the 1a moiety remained at the end of polymer chain.  相似文献   

11.
A series of carbazyl dithiocarbamates as RAFT agents, i.e. benzyl 9H-carbazole-9-carbodithioate (B), 1-phenylethyl 9H-carbazole-9-carbodithioate (C), cumyl 9H-carbazole-9-carbodithioate (D) and tert-butyl 9H-carbazole-9-carbodithioate (E), were successfully synthesized by an improved aqueous phase method based on a nucleophilic substitution reaction between sodium carbazole-9-carbodithioate (A) and alkyl halides at room temperature. Furthermore, the optimum reaction conditions and synthetic technology were sought. Compared with the traditional oil-phase method, the expected high-purity RAFT agents were obtained in the form of crystal that was precipitated and separated from the aqueous solution, so that vast organic solvents for purification were avoided. The activities of the carbazyl dithiocarbamates obtained as RAFT agents for the polymerizations of both styrene and methyl methacrylate were determined. The results show that all of the RAFT agents above mentioned are of significant activity in the RAFT polymerization of styrene, but only D has obvious activity in the RAFT polymerization of methyl methacrylate. Therefore, both the novel synthetic method and the carbazyl dithiocarbamates obtained possess potential application in the RAFT polymerization.  相似文献   

12.
A novel azo‐containing dithiocarbamate, 1‐phenylethyl N,N‐(4‐phenylazo) phenylphenyldithiocarbamate (PPADC), was successfully synthesized and used to mediate the polymerization of methyl acrylate (MA) and styrene (St). In the presence of PPADC, the reversible addition‐fragmentation chain transfer (RAFT) polymerization was well controlled in the case of MA, however, the slightly ill‐controlled in the case of St. Interestingly, the polymerization of St could be well‐controlled when using PPADC as the initiator in the presence of CuBr/PMDETA via atom transfer radical polymerization (ATRP) technique. In the cases of RAFT polymerization of MA and ATRP of St, the kinetic plots were both of first‐order, and the molecular weight of the polymer increased linearly with the monomer conversion while keeping the relatively narrow molecular weight distribution (Mw/Mn). The molecular weight of the polymer measured by gel permeation chromatographer (GPC) was also close to the theoretical value (Mn(th)). The obtained polymer was characterized by 1H‐NMR analysis, ultraviolet absorption, FTIR spectra analysis and chain‐extension experiments. Furthermore, the photoresponsive behaviors of azobenzene‐terminated poly(methyl acrylate) (PMA) and polystyrene (PS) were similar to PPADC. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5626–5637, 2008  相似文献   

13.
The copolymerization of N‐phenyl maleimide and p‐chloromethyl styrene via reversible addition–fragmentation chain transfer (RAFT) process with AIBN as initiator and 2‐(ethoxycarbonyl)prop‐2‐yl dithiobenzoate as RAFT agent produced copolymers with alternating structure, controlled molecular weights, and narrow molecular weight distributions. Using poly(N‐phenyl maleimide‐altp‐chloromethyl styrene) as the macroinitiator for atom transfer radical polymerization of styrene in the presence of CuCl/2,2′‐bipyridine, well‐defined comb‐like polymers with one graft chain for every two monomer units of backbone polymer were obtained. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2069–2075, 2006  相似文献   

14.
The reversible‐addition‐fragmentation chain transfer (RAFT) controlled radical polymerization of such vinylic monomers as styrene (= ethenylbenzene) has gained increasing popularity in current years. While there is a general agreement on the mechanism of RAFT polymerization, there is an ongoing debate about the values of the rate constants of its key steps, i.e., the addition of the propagating radicals to the mediator and the fragmentation of the resulting spin adducts. By carrying out an ESR spectroscopic investigation of the AIBN‐initiated polymerization of styrene (AIBN = 2,2′‐azobis[2‐methylpropanenitrile]), mediated by benzyl (diethoxyphosphoryl)dithioformate ( 5 ) as RAFT agent, we were able to detect and characterize four different radical species involved in the process. By reproducing their concentration–time profiles through a kinetic model, the addition and fragmentation rate constants at 90° of the propagating radicals to and from the mediator were estimated to be ca.107 M ?1 s?1 and ca. 103 s?1, respectively. The validity of the kinetic model was supported by hybrid meta DFT calculations with the BB1K functional that predicted addition‐ and fragmentation‐rate‐constant values in good agreement with those estimated from the ESR experiments.  相似文献   

15.
The micellar macro‐RAFT agent‐mediated dispersion polymerization of styrene in the methanol/water mixture is performed and synthesis of temperature‐sensitive ABC triblock copolymer nanoparticles is investigated. The thermoresponsive diblock copolymer of poly(N,N‐dimethylacrylamide)‐block‐poly[N‐(4‐vinylbenzyl)‐N,N‐diethylamine] trithiocarbonate forms micelles in the polymerization solvent at the polymerization temperature and, therefore, the dispersion RAFT polymerization undergoes as similarly as seeded dispersion polymerization with accelerated polymerization rate. With the progress of the RAFT polymerization, the molecular weight of the synthesized triblock copolymer of poly(N,N‐dimethylacrylamide)‐block‐poly[N‐(4‐vinylbenzyl)‐N,N‐diethylamine]‐b‐polystyrene linearly increases with the monomer conversion, and the PDI values of the triblock copolymers are below 1.2. The dispersion RAFT polymerization affords the in situ synthesis of the triblock copolymer nanoparticles, and the mean diameter of the triblock copolymer nanoparticles increases with the polymerization degree of the polystyrene block. The triblock copolymer nanoparticles contain a central thermoresponsive poly [N‐(4‐vinylbenzyl)‐N,N‐diethylamine] block, and the soluble‐to‐insoluble ‐‐transition temperature is dependent on the methanol content in the methanol/water mixture. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2155–2165  相似文献   

16.
A novel dithiocarbamate bearing azobenzene group, 2‐(phenylazo‐phenoxy‐carbonyl) prop‐2‐yl 9H‐carbazole‐9‐carbodithioate (APCDT), was synthesized and used as a RAFT agent in the polymerization of methyl methacrylate (MMA). The results showed that the controllability to the polymerization of MMA was promoted with APCDT as RAFT agent compared to 2‐(ethoxycarbonyl) prop‐2‐yl 9H‐carbazole‐9‐carbodithioate (EPCDT) under the same experimental conditions. The reason was attributed to the higher chain transfer constant of APCDT than that of EPCDT in the presence of more bulkier and more electrophilic azobenzene moiety. In addition, the RAFT polymerizations of St and methylacrylate (MA) using APCDT as the RAFT agent were also carried out. The ultraviolet spectrum and fluorescence spectrum of the obtained polymers were investigated. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2886–2896, 2007  相似文献   

17.
Dispersion polymerization was applied to the controlled/living free‐radical polymerization of styrene with a reversible addition–fragmentation chain transfer (RAFT) polymerization agent in the presence of poly(N‐vinylpyrrolidone) and 2,2′‐azobisisobutyronitrile in an ethanol medium. The effects of the polymerization temperature and the postaddition of RAFT on the polymerization kinetics, molecular weight, polydispersity index (PDI), particle size, and particle size distribution were investigated. The polymerization was strongly dependent on both the temperature and postaddition of RAFT, and typical living behavior was observed when a low PDI was obtained with a linearly increased molecular weight. The rate of polymerization, molecular weight, and PDI, as well as the final particle size, decreased with an increased amount of the RAFT agent in comparison with those of traditional dispersion polymerization. Thus, the results suggest that the RAFT agent plays an important role in the dispersion polymerization of styrene, not only reducing the PDI from 3.34 to 1.28 but also producing monodisperse polystyrene microspheres. This appears to be the first instance in which a living character has been demonstrated in a RAFT‐mediated dispersion polymerization of styrene while the colloidal stability is maintained in comparison with conventional dispersion polymerization. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 348–360, 2007  相似文献   

18.
Amphiphilic supramolecular miktoarm star copolymers linked by ionic bonds with controlled molecular weight and low polydispersity have been successfully synthesized via reversible addition‐fragmentation chain transfer (RAFT) polymerization using an ion‐bonded macromolecular RAFT agent (macro‐RAFT agent). Firstly, a new tetrafunctional initiator, dimethyl 4,6‐bis(bromomethyl)‐isophthalate, was synthesized and used as an initiator for atom transfer radical polymerization (ATRP) of styrene to form polystyrene (PSt) containing two ester groups at the middle of polymer chain. Then, the ester groups were converted into tertiary amino groups and the ion‐bonded supramolecular macro‐RAFT agent was obtained through the interaction between the tertiary amino group and 2‐dodecylsulfanylthiocarbonylsulfanyl‐2‐methyl propionic acid (DMP). Finally, ion‐bonded amphiphilic miktoarm star copolymer, (PSt)2‐poly(N‐isopropyl‐acrylamide)2, was prepared by RAFT polymerization of N‐isopropylacrylamide (NIPAM) in the presence of the supramolecular macro‐RAFT agent. The polymerization kinetics was investigated and the molecular weight and the architecture of the resulting star polymers were characterized by means of 1H‐NMR, FTIR, and GPC techniques. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5805–5815, 2008  相似文献   

19.
Poly[N‐(4‐vinylbenzyl)‐N,N‐dibutylamine hydrochloride] trithiocarbonate, which contains the reactive trithiocarbonate group and the appending surface‐active groups, is used as both surfactant and macromolecular reversible addition‐fragmentation chain transfer (macro‐RAFT) agent in batch emulsion polymerization of styrene. Under the conditions at high monomer content of ~20 wt % and with the molecular weight of the macro‐RAFT agent ranging from 4.0 to 15.0 kg/mol, well‐controlled batch emulsion RAFT polymerization initiated by the hydrophilic 2‐2′‐azobis(2‐methylpropionamidine) dihydrochloride is achieved. The polymerization leads to formation of nano‐sized colloids of the poly[N‐(4‐vinylbenzyl)‐N,N‐dibutylamine hydrochloride]‐b‐ polystyrene‐b‐poly[N‐(4‐vinylbenzyl)‐N,N‐dibutylamine hydrochloride] triblock copolymer. The colloids generally have core‐shell structure, in which the hydrophilic block forms the shell and the hydrophobic block forms the core. The molecular weight of the triblock copolymer linearly increases with increase in the monomer conversion, and the values are well‐consistent with the theoretical ones. The molecular weight polydispersity index of the triblock copolymer is below 1.2 at most cases of polymerization. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
RAFT grafted montmorillonite (MMT) clays [i.e., N,N‐dimethyl‐N‐(4‐(((phenylcarbonothioyl)thio)methyl)benzyl)ethanammonium‐MMT (PCDBAB‐MMT) and N‐(4‐((((dodecylthio)carbonothioyl)thio)methyl)benzyl)‐N,N‐dimethylethanammo‐nium‐MMT (DCTBAB‐MMT)] of various loadings were dispersed in styrene (S) monomer and the resultant mixtures emulsified and sonicated in the presence of a hydrophobe (hexadecane) into miniemulsions. The stable miniemulsions thus obtained were polymerized to yield encapsulated polystyrene‐clay nanocomposites (PS‐CNs). The molar mass and polydispersity index (PDI) of the PS‐CNs depended on the amount of RAFT agent in the system, in accordance with the features of the RAFT process. The morphology of the PS‐CNs ranged from partially exfoliated to an intercalated morphology, depending on the percentage clay loading. The thermomechanical properties of the PS‐CNs were better than those of the neat PS polymer, and were dependent on the molar mass, PS‐CN morphology and clay loading. The similarities and differences of the PS‐CNs prepared here by miniemulsion polymerization were compared to those prepared using the same RAFT agents and polymer system by bulk polymerization (as reported by us in a previous article). © Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7114–7126, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号