首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
The effects of nylon 6 matrix viscosity and a multifunctional epoxy interfacial modifier on the notched impact strength of the blends of nylon 6 with a maleic anhydride modified polyethylene‐octene elastomer/semi‐crystalline polyolefin blend (TPEg) were studied by means of morphological observation, and mechanical and rheological tests. Because the viscosity of the TPEg is much higher than that of nylon 6, an increase in the viscosity of nylon 6 reduces the viscosity mismatch between the dispersed phase and the matrix, and increases notched impact strength of the blends. Moreover, addition of 0.3 to 0.9 phr of the interfacial modifier leads to a finer dispersion of the TPEg and greatly improves the notched impact strength of the nylon 6/TPEg blends. This is because the multi‐epoxy interfacial modifier can react with nylon 6 and the maleated TPEg. The reaction with nylon 6 increases the viscosity of the matrix while the coupling reaction at the interface between nylon 6 and the maleated TPEg leads to better compatibilization. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2664–2672, 1999  相似文献   

2.
Binary CNBR/PP‐g‐GMA and ternary CNBR/PP/PP‐g‐GMA thermoplastic elastomers were prepared by reactive blending carboxy nitrile rubber (CNBR) powder with nanometer dimension and polypropylene functionalized with glycidyl methacrylate (PP‐g‐GMA). Morphology observation by using an atomic force microscope (AFM) and TEM revealed that the size of CNBR dispersed phase in CNBR/PP‐g‐GMA binary blends was much smaller than that of the corresponding CNBR/PP binary blends. Thermal behavior of CNBR/PP‐g‐GMA and CNBR/PP blends was studied by DSC. Comparing with the plain PP‐g‐GMA, Tc of PP‐g‐GMA in CNBR/PP‐g‐GMA blends increased about 10 °C. Both thermodynamic and kinetic effects would influence the crystallization behavior of PP‐g‐GMA in CNBR/PP‐g‐GMA blends. At a fixed content of CNBR, the apparent viscosity of the blending system increased with increasing the content of PP‐g‐GMA. FTIR spectrum verified that the improvement of miscibility of CNBR and PP‐g‐GMA was originated from the reaction between carboxy end groups of CNBR and epoxy groups of GMA grafted onto PP molecular chains. Comparing with CNBR/PP blends, the tensile strength, stress at 100% strain, and elongation at break of CNBR/PP‐g‐GMA blends were greatly improved. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1042–1052, 2004  相似文献   

3.
Short length vapor‐grown carbon nanofibers (VGCNFs) were functionalized with 4‐aminobenzoic acid in polyphosphoric acid/phosphorous phentoxide medium via “direct” Friedel‐Crafts acylation reaction to afford aminobenzoyl‐functionalized VGCNFs (AF‐VGCNFs). The AF‐VGCNFs as a cocuring agent were mixed with epoxy resin by simple mechanical stirring in methanol which was added to help efficient mixing. After evaporation of methanol, 4,4′‐methylenedianiline as a curing agent was added to the mixture, which was then cured at elevated temperatures. The resultant composites displayed uniform dispersion of AF‐VGCNFs into cured epoxy matrix. During curing process, the amine functionalities on AF‐VGCNF together with 4,4′‐methylenedianiline were expected to be involved in covalent attachment to the epoxy resin. As a result, both tensile modulus and strength of the composites were improved when compared with those of pure epoxy resin. Thus, the AF‐VGCNFs play a role as an outstanding functional additive, which could resolve both dispersion and interfacial adhesion issues at the same time by functionalization of VGCNFs and covalent bonding between the additive and matrix, respectively. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7473–7482, 2008  相似文献   

4.
A mixture of epoxy with liquid nitrile rubber, carboxyl‐terminated (butadiene‐co‐acrylonitrile) (CTBN) was cured under various temperatures. The cured resin was a two‐phase system, where spherical rubber domains were dispersed in the matrix of epoxy. The morphology development during cure was investigated by scanning electron microscope (SEM). There was slight reduction in the glass transition temperature of the epoxy matrix (Tg) on the addition of CTBN. It was observed that, for a particular CTBN content, Tg was found to be unaffected by the cure temperature. Bimodal distribution of particles was noted by SEM analysis. The increase in the size of rubber domains with CTBN content is due probably to the coalescence of the rubber particles. The mechanical properties of the cured resin were thoroughly investigated. Although there was a slight reduction in tensile strength and young's modulus, appreciable improvements in impact strength, fracture energy, and fracture toughness were observed. Addition of nitrile rubber above 20 parts per hundred parts of resin (phr) made the epoxy network more flexible. The volume fraction of dispersed rubbery phase and interfacial area were increased with the addition of more CTBN. A two‐phase morphology was further established by dynamic mechanical analysis (DMA). © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2531–2544, 2004  相似文献   

5.
Amphiphilic block copolymers composed of a hydrophilic poly(ethylene glycol) (PEG) block and a hydrophobic poly(glycidyl methacrylate) (PGMA) block were synthesized through cationic ring‐opening polymerization with PEG as the precursor. The model reactions indicated that the reactivity of the epoxy groups was higher than that of the double bonds in the bifunctional monomer glycidyl methacrylate (GMA) under the cationic polymerization conditions. Through the control of the reaction time in the synthesis of block copolymer PEG‐b‐PGMA, a linear GMA block was obtained through the ring‐opening polymerization of epoxy groups, whereas the double bond in GMA remained unreacted. The results showed that the molecular weight of the PEG precursor had little influence on the grafting of GMA, and the PGMA blocks almost kept the same length, despite the difference of the PEG blocks. In addition, the PGMA blocks only consisted of several GMA units. The obtained amphiphilic PEG‐b‐PGMA block copolymers could form polymeric core–shell micelles by direct molecular self‐assembly in water. The crosslinking of the PGMA core of the PEG‐b‐PGMA micelles, induced by ultraviolet radiation and heat instead of crosslinking agents, greatly increased the stability of the micelles. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2038–2047, 2005  相似文献   

6.
A novel biotinylated and enzyme‐immobilized nanobio device was prepared with heterobifunctional composite latex particles. Hemispherical poly(glycidyl methacrylate‐co‐divinylbenzene)/polystyrene [P(GMA‐DVB)/PSt] particles with epoxy and hydroxyl groups were prepared by soap‐free seeded emulsion polymerization with P(GMA‐DVB) seed particles. Hydroxyl groups were introduced to PSt chain terminals in the seeded stage by adding 2‐mercaptoethanol as a chain‐transfer agent. To obtain the desired hemispherical structure particles, we studied the effects of the preswelling process, the type and amount of solvents added in the seeded polymerization step, the weight ratio of the secondary monomer (styrene) to the seed particle (M/P), and the type of initiators. Under suitable conditions, heterobifunctional P(GMA‐DVB)/PSt was obtained, which was confirmed by observing the binding of streptavidin–colloidal gold with transmission electron microscopy (TEM). To obtain biotinylated and enzyme‐immobilized particles, 5‐(N‐succinimidyloxycarbonyl)pentyl D‐biotinamide was first reacted with the hydroxyl group on the PSt domain of the particle. Pyruvate kinase (PK) was then directly immobilized to the biotinylated particles through a reaction with the epoxy group in the PGMA domain. The monolayer of PK on the latex particle surface was considered to be formed by covalent binding. The activity of immobilized PK was almost conserved, even after being stored at 4 °C for 48 days. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 562–574, 2005  相似文献   

7.
Blends of poly(2,6-dimethyl-1,4-phenylene oxide)/nylon 6 alloys based on ethylene-propylene-diene elastomer (EPDM) grafted with maleic anhydride (MA) (EPDM-g-MA), EPDM grafted with glycidyl methacrylate (EPDM-g-GMA), and styrene-ethylene-butadiene-styrene block copolymer grafted with MA (SEBS-g-MA) were prepared via melt extruction, and morphology, mechanical properties, and rheology were studied. The compatibilizing effects of functionalized elastomers on the PPO/nylon 6 alloys were proved by DSC analysis and confirmed by the significant improvement in the notched Izod impact strength. Toughening was resulted from the smaller particle size and finer dispersion of EPDM in the PPO/nylon 6 matrix as well as a novel network structure of SEBS-g-MA domain in matrix. The notched Izod impact strength of the blends exhibited an optimum value when the extent of MA or GMA graft ratio of EPDM varied, which was an order of magnitude higher than the non-toughened alloys. The morphology revealed that the size of EPDM particles decreased with an increase in graft ratio of MA or GMA onto EPDM. Rheology investigation indicated that the MA or GMA moieties on EPDM reacted with the amine groups of nylon 6, which increased the molecular weight and the degree of branching, and thus resulted in an increase in the viscosity of the blends. This proved the reactive compatibilization between functionalized EPDM and PPO/nylon 6 matrix.  相似文献   

8.
An ambient self‐curable latex (ASCL) was prepared via the blending of colloidal dispersions in water of a chloromethylstyrene‐functionalized copolymer and a tertiary‐amine‐functionalized copolymer. Upon casting and drying under ambient conditions, the ASCL could generate crosslinked continuous polymer films. The crosslinking occurred via the Menschutkin reaction (quaternization) between the two types of functional groups. Because this reaction was reversible at high temperatures, the films could be decrosslinked and hence were self‐curable. The prepared ASCL exhibited excellent colloidal and chemical stability during long‐term storage: no significant changes in the colloidal properties, such as the particle size, electrophoretic mobility, and crosslinking reactivity, were observed after 48 months of storage. The electrophoretic measurements indicated that the electrostatic repulsion between the negatively charged particles of the ASCL was responsible for the excellent stability. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2598–2605, 2005  相似文献   

9.
Pristine multiwalled carbon nanotubes (P‐MWNTs) were functionalized with 4‐chlorobenzoic acid via “direct” Friedel‐Crafts acylation in polyphosphoric acid (PPA)/phosphorous pentoxide (P2O5) medium. The resultant 4‐chlorobenzoyl‐functionalized MWNTs (F‐MWNTs) were soluble in chlorinated solvents such as dichloromethane, chloroform, and carbon tetrachloride. A large scale of nylon 610/F‐MWNT composite could be conveniently prepared by in situ interfacial polymerization of 1, 6‐hexamethylenediamine (HMDA) in an aqueous phase, and sebacoyl chloride with F‐MWNTs in an organic phase. Similarly, nylon 610/P‐MWNT composite was also prepared for comparison. The state of F‐MWNTs dispersion in nylon 610 matrix was distinctively better than that of P‐MWNTs, which could be clearly discerned by both naked eye and scanning electron microcopy (SEM). As a result, the tensile strength of nylon 610/F‐MWNT composite was 4.9‐fold higher than that of nylon 610/P‐MWNT composite. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6041–6050, 2008  相似文献   

10.
An exploratory pioneering study on the fabrication of nylon‐6/montmorillonite (MMT) nanocomposites with the aid of water as an intercalating/exfoliating agent via melt compounding in a twin‐screw extruder was conducted. Commercial nylon‐6 pellets and pristine MMT powder were directly fed into the hopper of the extruder. Water was then injected into the extruder downstream. After interactions with the nylon‐6 melt/pristine MMT system, water was removed from the extruder further downstream via a venting gate. As such, no third‐component residual was left within the extrudates. Transmission electron microscopy micrographs showed that pristine MMT was uniformly dispersed in the nylon‐6 matrix. The contact time between water and the nylon‐6/pristine MMT system inside the extruder was so short that nylon‐6 was subjected to very little hydrolysis, if any. The resultant nanocomposites showed higher stiffness, superior tensile strength, and improved thermal stability in comparison with their counterparts obtained without water assistance and the nylon‐6/organic MMT nanocomposites. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1100–1112, 2005  相似文献   

11.
Blends of a tetrafunctional epoxy resin, tetraglycidyl‐4,4′‐diaminodiphenylmethane (TGDDM), and a hydroxyl‐functionalized hyperbranched polymer (HBP), aliphatic hyperbranched polyester Boltorn H40, were prepared using 3,3′‐diaminodiphenyl sulfone (DDS) as curing agent. The phase behavior and morphology of the DDS‐cured epoxy/HBP blends with HBP content up to 30 phr were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM). The phase behavior and morphology of the DDS‐cured epoxy/HBP blends were observed to be dependent on the blend composition. Blends with HBP content from 10 to 30 phr, show a particulate morphology where discrete HBP‐rich particles are dispersed in the continuous cured epoxy‐rich matrix. The cured blends with 15 and 20 phr exhibit a bimodal particle size distribution whereas the cured blend with 30 phr HBP demonstrates a monomodal particle size distribution. Mechanical measurements show that at a concentration range of 0–30 phr addition, the HBP is able to almost double the fracture toughness of the unmodified TGDDM epoxy resin. FTIR displays the formation of hydrogen bonding between the epoxy network and the HBP modifier. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 417–424, 2010  相似文献   

12.
The well dispersion of functionalized multi‐walled carbon nanotube (f‐MWCNT) in nylon 6 matrix was prepared by solution mixing techniques. The isothermal and nonisothermal crystallization kinetics of nylon 6 and nylon 6/f‐MWCNT nanocomposites were studied by differential scanning calorimetry (DSC), X‐ray diffraction and polarized optical microscopy analysis. DSC isothermal results revealed that the activation energy of nylon 6 extensively decreased by adding 1 wt % f‐MWCNT into nylon 6, suggesting that the addition of small amount of f‐MWCNT probably induces the heterogeneous nucleation. Nevertheless, the addition of more f‐MWCNT into nylon 6 matrix reduced the transportation ability of polymer chains during crystallization process and thus increased the activation energy. The nonisothermal crystallization of nylon 6/f‐MWCNT nanocomposites was also discussed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 158–169, 2008  相似文献   

13.
Poly(L ‐lactide) (PLLA)/poly(butylene succinate‐co‐butylene adipate) (PBSA) blends were compounded with Cloisite 25A® (C25A) and C25A functionalized with epoxy groups, respectively. Epoxy groups on the surface of C25A were introduced by treating C25A with (glycidoxypropyl)trimethoxy silane (GPS) to produce so called Twice Functionalized Organoclay (TFC). Variation of morphology and properties of PLLA/PBSA/C25A composites was investigated before and after the treatment with GPS. The morphological structure of the composites was analyzed by using X‐ray diffractometry (XRD) and transmission electron microscopy (TEM). The silicate layers of PLLA/PBSA/TFC were exfoliated to a larger extent than PLLA/PBSA/C25A. Incorporation of the epoxy groups on C25A improved significantly elongation at break as well as tensile modulus and tensile strength of PLLA/PBSA/C25A. The larger amount of exfoliation of the silicate layers in PLLA/PBSA/TFC as compared with that in PLLA/PBSA/C25A was attributed to the increased interfacial interaction between the polyesters and the clay due to chemical reaction. Thermo gravimetric analysis revealed that both T5%, which was the temperature corresponding to 5% weight loss, and activation energy of thermal decomposition of PLLA/PBSA/TFC were far superior to those of PLLA/PBSA/C25A as well as to those of PLLA/PBSA, indicating that the composites with exfoliated silicate layers were more thermally stable than those with intercalated silicate layers. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 478–487, 2005  相似文献   

14.
Monodisperse homogeneous and core–shell latex particles of various sized between 200 and 600 nm were synthesized by emulsion copolymerization. Some of the core–shell particles were functionalized with epoxy groups at their peripheries upon introduction of glycidyl methacrylate (GMA) during the synthesis. The core consisted of crosslinked polybutylacrylate and the shell polymethylmethacrylate. Synthesis conditions at high and low temperatures were optimized to obtain coreshell particles with a well-defined morphology. The particles were characterized by quasi-elastic light scattering, scanning electron microscopy and transmission electron microscopy. The latex particles functionalized with GMA were then dispersed into a reactive matrix (styrene and maleic anhydride copolymer) using a batch mixer to obtain blends with well-defined and stabilized morphology. 4 Dimethylaminopyridine was used as a catalyst. The reaction between the epoxy groups at the particle surface and the maleic anhydride or diacid groups of the matrix was evaluated by torque and extraction techniques. A small amount of conversion generates sufficient amounts of grafted species at the matrix and particle interfaces to ensure a good interfacial adhesion.  相似文献   

15.
Free‐radical copolymerizations of N‐vinylcaprolactam (VCL) and glycidyl methacrylate (GMA) were investigated to synthesize temperature‐responsive reactive copolymers with minimized compositional heterogeneity. The average copolymer composition was determined by Fourier transform infrared and nuclear magnetic resonance techniques. The reactivity ratios for VCL and GMA were found to be 0.0365 ± 0.0009 and 6.44 ± 0.36 by the Fineman–Ross method and 0.039 ± 0.006 and 6.75 ± 0.29 by the Kelen–Tudos method, respectively. When prepared by batch polymerization, VCL–GMA copolymers had a highly heterogeneous composition and fractions of different solubilities in water. The use of a gradual feeding technique, which included the sequential addition of more reactive GMA monomer into the reaction, yielded copolymers with much more homogeneous composition. The produced copolymers with 0.9 and 0.11 fractional GMA contents preserved their temperature‐responsive properties and precipitated from aqueous solutions when the temperature exceeded 31 °C. The GMA units in the VCL–GMA copolymers were capable of reacting with amino end‐functionalized poly(ethylene oxide) at room temperature to produce poly(N‐vinylcaprolactam)–poly(ethylene oxide) graft copolymers. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 183–191, 2006  相似文献   

16.
A novel one‐step approach is reported to prepare thermosensitive hydrogels simply by using hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD)/glycidyl methacrylate (GMA)/N‐isopropylacrylamide (NIPAM) system. From GMA and HP‐β‐CD, HP‐β‐CD/GMA inclusion complex was prepared and identified with NMR, FTIR, and UV‐vis spectroscopies. GMA in the form of HP‐β‐CD/GMA complex was copolymerized with NIPAM in water with K2S2O8 as initiator, yielding hydrogels designated as poly(NIPAM‐CD‐GMA). The inclusion of CD in the hydrogels was confirmed by FTIR spectroscopy. The contents of CD and GMA placed considerable influence on the swelling ratio and temperature‐sensitivity of the produced hydrogels. The hydrogels bearing CD moieties showed higher swelling ratio and temperature‐sensitivity when compared with that without CD. The porous structure of the hydrogels containing CD was observed in the SEM images. Relevant mechanism of the ring‐opening reaction of epoxide groups in GMA, the subsequent crosslinking reactions and the formation of hydrogels containing CD moieties were proposed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2193–2201, 2008  相似文献   

17.
The effects of pristine and amino‐functionalized multiwalled carbon nanotubes (MWNTs) on the crystallization behaviors of nylon‐6 were investigated by differential scanning calorimetry and X‐ray diffraction. The results indicate the presence of polymorphism in nylon‐6 and its composites, which is dependent on the MWNTs concentration and the cooling rate. More MWNTs and slow cooling from the melt favors the formation of α crystalline form. With the increase in cooling rates, the crystallinity of neat nylon‐6 decreases, and that of the composites decreases initially but increases afterward. Moreover, the degree of crystallinity of the composites is higher than neat nylon‐6 under high cooling rates, counter to what is observed under low cooling rates. The heterogeneous nucleation induced by MWNTs and the restricted mobility of polymer chains are considered as the main factors. Furthermore, addition of MWNTs increases the crystallization rate of α crystalline form but amino‐functionalization of MWNTs weakens this effect. The influence of thermal treatment on the crystalline structure of MWNTs/nylon‐6 composites is also discussed. A γ–α phase transition takes place at lower temperature for MWNTs/nylon‐6 composites than for nylon‐6. The annealing peaks of the composites annealed at 160 °C are higher than that of neat nylon‐6, and the highest annealing peak is obtained for amino‐functionalized MWNTs/nylon‐6 composites. This phenomenon is closely related to the different nucleation and recrystallization behaviors produced by various MWNTs in confined space. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1499–1512, 2006  相似文献   

18.
The nylon 1010/ethylene‐vinyl acetate rubber (EVM)/maleated ethylene‐vinyl acetate copolymers (EVA‐g‐MAH) ternary blends were prepared. The effect of EVM/EVA‐g‐MAH ratio on the toughness of blends was examined. A super tough nylon 1010 blends were obtained by the incorporation of both EVM and EVA‐g‐MAH. Impact essential work of fracture (EWF) model was used to characterize the fracture behavior of the blends. The nylon/EVM/EVA‐g‐MAH (80/15/5) blend had the highest total fracture energy at a given ligament length (5 mm) and the highest dissipative energy density among all the studied blends. Scanning electron microscopy images showed the EVM and EVA‐g‐MAH existed as spherical particles in nylon 1010 matrix and their size decreased gradually with increasing EVA‐g‐MAH content. Large plastic deformation was observed on the impact fracture surface of the nylon/EVM/EVA‐g‐MAH (80/15/5) blend and related to its high impact strength. Then with increasing EVA‐g‐MAH proportion, the matrix shear yielding of nylon/EVM/EVA‐g‐MAH blends became less obvious. EVM and EVA‐g‐MAH greatly increased the apparent viscosity of nylon 1010, especially at low shear rates. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 877–887, 2009  相似文献   

19.
Polypropylene (PP)/nylon 6/clay composites were prepared by compounding of PP, which had previously been treated with two kinds of silane compounds, with a master batch composed of 90 wt % of nylon 6 and 10 wt % of octadecyl amine‐modified sodium montmorillonite (NM10). The morphology of the composites was investigated by means of SEM, TEM, XRD, and energy‐dispersive X‐ray analysis. All of the composites exhibited a phase‐separated morphology, irrespective of whether the PP was modified with the silane compounds or not. However, adhesive strength between the modified PP and NM10 was stronger than that between neat PP and NM10. Moreover, the PP grafted with 3‐(trimethoxysilyl)propyl methacrylate (PP2) reacted with the silanol groups of the clay to form PP‐clay hybrid during the compounding, which acted as a compatibilizer for the PP/nylon 6/clay composite. PP2NM composite (PP2/NM10 80/20 on weight basis) exhibited a peculiar morphology, in that the PP‐rich phase formed island domains within the nylon 6‐rich domains, which were in turn dispersed in the PP‐rich continuous matrix. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 607–615, 2007.  相似文献   

20.
The functionalization of polymeric organolithiums (PLi) with 3,4‐epoxy‐1‐butene (EPB) in a hydrocarbon solution yielded the corresponding hydroxybutene‐functionalized polymers in high yields (>95%). Three modes of addition of PLi to EPB were observed (1,4, 3,4, and 4,3). The products and chain‐end structures were characterized by 1H NMR, 13C NMR, attached‐proton‐test 13C NMR, calculated 13C NMR chemical shifts, and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS). The regioselectivity of the addition depended on the PLi chain‐end structure, the reaction conditions, and the addition of lithium salts or Lewis bases. In the absence of additives, the functionalization of poly(styryl)lithium (PSli) produced equal amounts of 1,4‐, 3,4‐, and 4,3‐addition, as determined by quantitative 13C NMR analysis. The use of a low temperature (6 °C), inverse addition, the addition of triethylamine (TEA; [TEA]/[PSLi] = 20) as a Lewis base, or dienyllithium chain ends produced polymers with only the 1,4‐addition product. Mild dehydration of the hydroxybutene‐functionalized polymer with p‐toluenesulfonic acid produced the corresponding diene‐functionalized macromonomer, as shown by MALDI‐TOF MS. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 947–957, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号