首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
A new s‐triazine ring containing aromatic diisocyanate bearing a pendent alkyne group, namely, 2,4‐bis(4‐isocyanatophenoxy)?6‐(prop‐2‐yn‐1‐yloxy)?1,3,5‐triazine was synthesized and reacted with various diols viz., 1,10‐decanediol, tetraethylene glycol and polyethylene glycols in the presence of dibutyltin dilaurate as the catalyst to obtain a series of linear polyurethanes. The selected polyurethanes possessing pendent alkyne groups were postmodified with chemically diverse azides viz., 1‐(azidomethyl)benzene, 1‐(azidomethyl)pyrene, and methoxy end‐caped poly(ethylene glycol) azide via copper‐catalysed azide‐alkyne Huisgen 1,3‐dipolar cycloaddition. FTIR and 1H NMR spectra indicated quantitative click reaction. UV–vis and fluorescence spectroscopic analysis confirmed complete incorporation of pyrenyl groups indicating the formation of fluorescence active polyurethane by postmodification with 1‐(azidomethyl)pyrene. TG analysis of polyurethanes indicated two stage weight loss and their thermal stability, as judged by T 10 values, was governed by weight percent of urethane linkages. The water contact angle measurements revealed improved wettability with increased content of PEG either in the backbone of polyurethanes or as grafted chains. DLS and TEM studies confirmed that certain polyurethanes possessing PEG segments displayed self‐assembly in aqueous solution, which was further supported by pyrene encapsulation studies using UV–vis spectroscopy. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 1008–1020  相似文献   

2.
Pyrene was incorporated as pendant unit to side‐chain urethane methacrylate polymers having a short ethyleneoxy or a long polyethyleneoxy spacer segment. The short‐spacer pyrene urethane methacrylate was also incorporated either as block or random copolymer (1:9) along with polystyrene. The excimer emission was observed to be different for different polymers with the random copolymer exhibiting the lowest efficiency. But, the total quantum yield was highest (? = 0.58) for random copolymer due to the high emission coefficient of monomer compared to that of excimer. The polymer dynamics were compared by steady state emission and fluorescence decay in THF or THF/water (9:1) solvent mixture and films. The solid state decay profile showed decay without a rise time indicating presence of ground state aggregates. In THF/water (9:1), the decay profile at the excimer emission (500 nm) showed a rise time indicating dynamic excimers. The evolution of excimeric emission centred ~430 or ~480 nm as a function of temperature was also studied in THF/water (9:1). The IE/IM ratio for the λ343 nm excitation exhibited steady increase with temperature with the block copolymer PS‐b‐PIHP exhibiting the highest ratio and highest rate of increase; whereas, the random copolymer PS‐r‐PIHP had the lowest IE/IM ratios. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
We present new side‐chain quaternized polyurethanes as antibacterial adhesives made by polyaddition polymerization followed by quaternization for different time intervals. The degree of quaternization of N‐diol units in the polymer is changed from 13.6 to 99.0 mol % (almost complete) for tuning the antibacterial action (leaching/contact type) and studying effect on adhesive strength. The degree of quaternization of about 26 mol % provided the nonleaching antibacterial effect with adhesive strength more than 60 N cm?2 on aluminum and glass substrates. The increase in the degree of quaternization enhanced polymer polarity shifting nonleaching (contact type) antibacterial behavior to the leaching type but maintaining the high adhesive strengths. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 752–757  相似文献   

4.
A series of linear‐dendritic hybrid polymers, containing pyrene units at the periphery of aliphatic polyester dendrons, were prepared for the purpose of dispersing shortened single‐walled carbon nanotubes (SWNTs) in tetrahydrofuran (THF). The prepared hybrids contained 1, 2, 4, 8, or 16 (G0 through G4) pyrene units and a linear segment composed of polystyrene. It was found that a minimum of four pyrene units was necessary to form a strong enough interaction with SWNTs to enable steric stabilization in solution, when using a linear polymer segment of 11.5 kDa. Increasing either the number of pyrene units per polymer chain or the length of the polymer segment to 18.0 kDa did not improve nanotube solubility, whereas decreasing the polymer length resulted in significantly less effective nanotube dissolution. The G4 dendron alone, without the linear polystyrene segment, was also found to impart solubility to the nanotubes in THF. Interactions between the series of linear‐dendritic hybrids and full‐length multiwalled carbon nanotubes were also investigated, and it was found that the polymers exhibited strong interactions with the multiwalled carbon nanotube surface, resulting in the formation of stable solutions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1016–1028, 2010  相似文献   

5.
Polymeric forms of ionic liquids have many potential applications because of their high thermal stability and ionic nature. Two ionic liquid monomers, 1‐(4‐vinylbenzyl)‐3‐butyl imidazolium tetrafluoroborate (VBIT) and 1‐(4‐vinylbenzyl)‐3‐ butyl imidazolium hexafluorophosphate (VBIH), were synthesized through the quaternization of N‐butylimidazole with 4‐vinylbenzylchloride and a subsequent anion‐ exchange reaction with sodium tetrafluoroborate or potassium hexafluorophosphate. Copper‐mediated atom transfer radical polymerization was used to polymerize VBIT and VBIH. The effects of various initiator/catalyst systems, monomer concentrations, solvent polarities, and reaction temperatures on the polymerization were examined. The polymerization was well controlled and exhibited living characteristics when CuBr/1,1,4,7,10,10‐hexamethyltriethylenetetramine or CuBr/2,2′‐bipyridine was used as the catalyst and ethyl 2‐bromoisobutyrate was used as the initiator. Characterizations by thermogravimetric analysis, differential scanning calorimetry, and X‐ray diffraction showed that the resulting VBIT polymer, poly[1‐(4‐vinylbenzyl)‐3‐butyl imidazolium tetrafluoroborate] (PVBIT), was amorphous and had excellent thermal stability, with a glass‐transition temperature of 84 °C. The polymerized ionic liquids could absorb CO2 as ionic liquids: PVBIT absorbed 0.30% (w/w) CO2 at room temperature and 0.78 atm. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1432–1443, 2005  相似文献   

6.
The formation of ruptured poly[2‐methoxy‐5‐(2′‐ethyl‐hexyloxy)‐1,4‐phenyl vinylene] (MEH–PPV) thin films coated from undried tetrahydrofuran (THF) solutions was investigated. Because of the incompatibility of water and MEH–PPV, the polymer films coated from THF/water solutions showed a ruptured film structure. In the photoluminescence (PL) spectra of the polymer thin films, the ruptured polymer films showed a redshifted emission in comparison with continuous polymer thin films. According to a comparison of the PL spectra of polymer solutions and films, MEH–PPV in THF showed a coil–cylinder transition during precipitation from solution. Because of the incompatibility of water and MEH–PPV, an increase in the water content could increase the ratio of polymer chains in the cylinder conformation, resulting in a redshifted emission for the films. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 79–84, 2006  相似文献   

7.
A set of novel linear polyurethanes was synthesized by reaction in solution of 1,6‐hexamethylene diisocyanate (HDI) or 4,4′‐methylene‐bis(phenyl diisocyanate) with 2,3‐acetalized threitols, specifically, 2,3‐O‐methylidene‐L ‐threitol and 2,3‐O‐isopropylidene‐D ‐threitol. The polyurethanes containing acetalized threitols had weight‐average molecular weights between 40,000 and 65,000 Da. Most of them were amorphous and they displayed Tg higher than their unsubstituted analogs. Deprotection of acetalized polyurethanes by treatment with acid allowed preparing semicrystalline polyurethanes bearing two free hydroxyl groups in the repeating unit. The crystalline structure and crystallizability of the hydroxylated polyurethane made from HDI were investigated taken as reference the polyurethane made from 1,4‐butanediol and HDI. The hydrolytic degradability of threitol derived polyurethanes was comparatively evaluated under a variety of conditions. Highest degradation rates were obtained upon incubation at pH 10 at temperatures above Tg, the aliphatic hydroxylated polyurethane being the fastest degrading compound. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7996–8012, 2008  相似文献   

8.
Linear telechelic, α,ω‐ditelechelic, and star‐shaped tri‐, tetra‐, penta‐, and hexa‐arm poly(L ‐lactide)s (PLAs) fitted at every arm with pyrene end group have been prepared. Internal dynamics and mobility of the PLA chains in tetrahydrofuran solution at 25 °C, with regard to the number of PLA arms in one macromolecule and the individual arm average degree of polymerization, was followed by fluorescence spectroscopy. Analysis of both static and time‐resolved spectra of the star‐shaped polymers revealed dynamic segmental motion resulting in end‐to‐end cyclization, accompanied by an excimer formation. Probability and rate of the latter reaction increased with increasing number of arms and with decreasing their polymerization degree. Moreover, time‐resolved measurements revealed that for macromolecules containing few arms (2 or 3) the pyrene moieties are located in the interior of the star‐shaped PLAs, whereas in the instance of the higher number of arms (4–6) they are located at the periphery of the star‐shaped PLAs. Thus, increasing the number of arms leads to their stretching away from the center of the star‐shaped PLA macromolecule. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4586–4599, 2005  相似文献   

9.
In this contribution, we reported an investigation of the morphologies, surface hydrophobicity, and shape memory properties of the organic–inorganic polyurethanes with double decker silsesquioxane (DDSQ) in the main chains. It was found that the organic–inorganic polyurethanes were microphase‐separated and that the POSS cages in the main chains were self‐organized into the spherical microdomains with the size of 10–50 nm in diameter. The introduction of POSS cages into the main chains resulted in the enhancement of glass transition temperatures (Tg's). In the meantime, the surface dewettability of the materials was significantly enhanced. X‐ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) indicates the improvement of the surface hydrophobicity resulted from the enrichment of POSS at the surfaces of the polyurethanes. The mechanical analyses, such as dynamic mechanical analysis (DMA) and creep‐recovery analysis (CRA), indicate that the POSS microdomains dispersed in the polyurethanes behaved as the physical crosslinking sites and promoted the formation of the crosslinked networks. Owing to the introduction of DDSQ into the main chains, the organic–inorganic polyurethanes significantly displayed shape memory properties, in marked contrast to the unmodified and linear polyurethane. The shape memory behavior has been addressed on the formation of the strong physically crosslinked networks in the organic–inorganic polyurethanes. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 893–906  相似文献   

10.
Pyrene-labeled functionalized ethylene-propylene (EP) copolymer was prepared by grafting 1-pyrenebutyrylhydrazine onto EP copolymer through maleic anhydride pendants. The EP copolymer contained 60 mol % ethylene; its weight-average molecular weight (Mw) was 148,000. The pyrene-labeled amide functionalized EP copolymer, PA-EP(60/40), was made to simulate the amine functionalized EP copolymers that are commonly used as dispersant additives in motor oils. UV absorption spectra, fluorescence emission and excitation spectra, and fluorescence decay profiles of the pyrene were studied to determine the copolymer conformation and dynamics in methylcyclohexane and tetrahydrofuran (THF). The pyrene fluorescence characteristics of PA-EP(60/40) were highly dependent on the solvent. The dependence of fluorescence emission intensity on the excitation wavelength was large in methylcyclohexane and moderate in THF. A frequency shift of about 2 nm was observed between the excitation spectrum obtained with the emission line at 377 nm and that at 550 nm in the methylcyclohexane solutions, but no shift was found in the corresponding tetrahydrofuran solutions. The ratios of the preexponential factors (a21/a22) of the excimer decays obtained in both methylcyclohexane and THF solutions were different from ?1.0. However, the deviation of the excimer formation process from the Birks scheme is small in THF but large in methylcyclohexane. In addition, the Huggins constants obtained from intrinsic viscosity measurements of the PA-EP(60/40) copolymer solutions suggest that copolymer aggregation occurs in methylcyclohexane but not in THF. H-bonding between two pyrene-containing pendants is apparently the main driving force for the formation of the ground state pyrene complex. THF is found to be effective in inhibiting the H-bonding formation. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
This contribution describes a simple method for preparing polymeric nanoparticles using photodimerization of anthracene moieties on the side chain of terpolymers in dilute regime and transformation of obtained polymeric nanoparticles into pyrene functional nanoparticles via Menschutkin quaternization procedure. Subsequently, pyrene possessing polymeric nanoparticles are attached onto multiwalled carbon nanotube (MWCNT) surfaces by π–π stacking strategy. Gel permeation chromatography, thermal gravimetric analysis, ultraviolet–visible, and fluorescence spectroscopies are used to analyze modified nanoparticles and their precursors. Electron microscopy and dispersion studies show that pyrene-modified polymeric nanoparticles are able to interconnect various CNTs. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2709–2714  相似文献   

12.
Side‐chain pyrene functional poly(vinyl alcohol) (PVA) was synthesized by using “click chemistry” strategy. First, partial tosylation of PVA with p‐toluene sulfonyl chloride were performed. The resulting PVA‐Ts polymer was then quantitatively converted into poly(vinyl alcohol)‐azide (PVA‐N3) in the presence of NaN3/DMF at 60 °C. Propargyl pyrene was prepared independently as a photoactive click component. Finally, azido functionalized PVA was coupled to propargyl pyrene with high efficiency by click chemistry. Incorporation of pyrene functionality in the resulting polymer was confirmed by spectral analysis. It is also shown that pyrene functionalized PVA (PVA‐Py) exhibited characteristic fluorescence properties and improved solubility in highly polar solvents such as water, DMSO, and DMF as well as less polar solvent such as THF compared with pristine PVA. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1317–1326, 2009  相似文献   

13.
An ordered polyurethane with a head‐to‐head (H‐H) or tail‐to‐tail (T‐T) content over 95% was prepared by polyaddition reaction of a nonsymmetric monomer, p‐isocyanatobenzyl isocyanate (1) with a symmetric monomer, ethylene glycol (2). The model reactions were studied in detail to demonstrate the feasibility of polymer formation. The polymerization was conducted in THF in the presence of triethylamine (TEA) at 0 °C by slow addition of a half amount of 2 to 1, followed by removing THF and then adding the rest of 2 in DMF at once at 30 °C in the presence of dibutyltin dilaurate (DBTL). The microstructure of the polymer obtained was investigated by 13C NMR spectroscopy, and it was found that the polymer had the expected structural regularity. The constitutional regularity of polymers influenced their thermal properties. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2106–2114, 2000  相似文献   

14.
The thermoreversible phase transition of poly(N‐isopropylacrylamide) randomly labeled with a spin label, 4‐amino‐2,2′,6,6′‐tetramethylpiperidine 1‐oxide (TEMPO), and a fluorescent dye, 4‐(pyren‐1‐yl)butyl (PNIPAM‐Py‐T), in different H2O/MeOH mixtures was studied by turbidimetry, continuous‐wave electron paramagnetic resonance spectroscopy (CW‐EPR), and fluorescence spectroscopy. The macroscopic phase diagram of PNIPAM‐Py‐T in H2O/MeOH measured by turbidimetry was identical to those of poly(N‐isopropylacrylamide) (PNIPAM) and of TEMPO‐labeled PNIPAM (PNIPAM‐T) in H2O/MeOH mixtures. However, distinct differences among the three polymers were detected in their solvent‐dependent EPR and fluorescence‐spectroscopic properties. The EPR spectra were analyzed in terms of the isotropic hyperfine coupling constants, which monitor the variation in environmental polarity of the radical labels occurring for the conformational transitions of the polymer as a function of temperature, as well as the correlation time for reorientation motion, the increase of which is indicative of the increased viscosity of the radical environment and interactions occurring between the radical and other surface groups of the precipitated polymer, if compared to the soluble polymer. The fluorescence of Py in PNIPAM‐Py‐T displayed contributions from isolated excited pyrenes (monomer emission) and from preformed pyrene ground‐state aggregates (excimer emission). The quantum efficiencies of monomer and excimer emission were monitored as a function of solvent composition. By the two experimental approaches, we demonstrate the profound influence of the PNIPAM‐attached pyrene units in increasing the hydrophobicity of the nanodomains formed upon heat‐induced precipitation of PNIPAM‐Py‐T.  相似文献   

15.
Frontal polymerization (FP) of poly(ethylene glycol) diacrylate (PEGDA) was carried out using benzoyl peroxide (BPO) as radical initiator. In addition, a pyrene containing monomer, 1‐pyrenebutyl acrylate (PyBuAc), was incorporated as a fluorescent probe in order to obtain luminescent materials with different chromophore contents. The resulting polymers were characterized by FT‐IR spectroscopy in the solid state and their thermal properties were determined by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Moreover, the optical properties of these materials were studied by absorption and fluorescence spectroscopy. The maximum amount of the incorporated pyrene‐containing monomer into the polymer matrix was limited to 1 wt % by the polymerization process. The obtained labeled polymers poly(PEGDA‐co‐PyBuAc) exhibited a broad absorption band at 345 nm. The fluorescence spectra of these polymers exhibited mainly “monomer emission” so that no excimer emission was observed. It is possible to tune the color of the emitted light by varying the pyrene content in the samples. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2890–2897  相似文献   

16.
A series of polyurethane hybrid networks have been synthesized using octakis(m‐isoprenyl‐α,α′‐dimethylbenzylisocyanato dimethylsiloxy) octasilsesquioxane (Q8M8TMI) as a crosslinking agent. The formation of the urethane linkages within the polyurethane hybrids was confirmed by photoacoustic FTIR spectroscopy. The TGA and DSC studies demonstrated that the incorporation of the POSS crosslinking agents altered the thermal properties of the polyurethanes, and that this was dependent on the length of the polyethylene glycol chain. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5038–5045  相似文献   

17.
Hydroxy‐terminated telechelic poly(vinyl ether)s with pendant oxyethylene chains were synthesized by the reaction of the CH3CH(OCOCH3)? O[CH2]4O? CH(OCOCH3)CH3/Et1.5AlCl1.5/THF‐based bifunctional living cationic polymers of 2‐methoxyethyl vinyl ether (MOVE), 2‐ethoxyethyl vinyl ether (EOVE), and 2‐(2‐methoxyethoxy)ethyl vinyl ether (MOEOVE) with water and the subsequent reduction of the aldehyde polymer terminals with NaBH4. The obtained poly(vinyl ether) polyols were reacted with an equimolar amount of toluene diisocyanates [a mixture of 2,4‐ (80%) and 2,6‐ (20%) isomers] to give water‐soluble polyurethanes. The aqueous solutions of these polyurethanes caused thermally induced precipitation at a particular temperature depending on the sort of the thermosensitive poly(vinyl ether) segments containing oxyethylene side chains. These polyurethanes also function as polymeric surfactants, lowered the surface tension of their aqueous solutions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1641–1648, 2010  相似文献   

18.
The concentration dependence of the diffusion coefficient of pyrene in single component and two-component room temperature curing silicone polymer coatings is investigated by the steady state fluorescence technique by measuring the pyrene excimer fluorescence intensity. At pyrene concentrations lower than 10 mM, the intensity of excimer fluorescence is proportional to the concentration and at higher concentrations it deviates from this trend due to concentration quenching. Thermal aging studies show that this concentration quenching can be removed by thermal annealing and the excimer emission intensity approaches the value expected from the trend at lower concentrations. The diffusion coefficient of pyrene at low concentrations in silicone polymer coatings is obtained using the approximate solution of one-dimensional diffusion equation. A modified approach is employed to estimate the diffusion coefficient at higher pyrene concentrations. In this method, the excimer intensity and time scale are shifted, respectively to Imax the maximum value of excimer intensity attained during annealing and tmax, the time taken to reach this. The estimated diffusion coefficients at different pyrene concentrations show a negligible dependence on pyrene concentration in both types of polymers. These results are attributed to the high structural mobility of silicone polymer chains due to their molecular structure.  相似文献   

19.
The introduction of pendant, reactive groups into polyurethane macromolecules is a challenging problem. A variant of the nondegradative modification of polyurethanes with epoxy groups attached to the urethane sites is proposed. Two types of commercial elastomeric segmented polyurethanes, represented by a poly(ether urethane) and a poly(urethane urea), were functionalized by base‐induced N‐glycidylation of the urethane hard segments with an excess of epibromohydrin in dimethylacetamide solutions at low temperatures. This resulted in the modification of polymers with 0.30–0.44 mmol/g of pendant epoxy groups. Lithium or potassium tert‐butoxides were used as bases to initiate the reaction. A nonpolymeric urethane model (ethyl Np‐tolylcarbamoate) was used to verify the course of glycidylation. One of the polymers was subjected to epoxy ring opening with 1‐propanethiol, demonstrating the versatility of pendant glycidyl groups as auxiliary groups for further bulk modifications of polyurethanes. These functionalized polyurethanes are useful for the further covalent attachment of suitable moieties (stabilizing or biocompatibility‐enhancing agents). © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4378–4385, 2002  相似文献   

20.
A series of polyamido amine (PAMAM) dendrimers (Generations 2, 3, 4, and 6) fully functionalized at their periphery with first‐ and second‐generation poly (phenylenevinylene) (PPV) dendrons have been efficiently prepared. MALDI‐TOF mass spectrometry proved to be particularly useful for the characterization of the new hybrid dendrimers as well as for the estimation of the average number of PPV dendrons attached to the surface. The optical absorption and emission properties of these systems were studied. The materials display extremely high molar extinction coefficients and emit blue light with only slightly lower fluorescence quantum yields than the corresponding free dendrons. Self‐quenching interactions between PPV units were not observed in THF. However, the luminescence properties underwent a dramatic change when toluene was used as the solvent. The lower polarity of toluene caused shrinkage of the PAMAM structure and brought the PPV chromophores closer together, leading to self‐quenching interactions and excimer formation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6409–6419, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号