首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electron ionisation (EI) mass spectra of a series of bridgehead‐fused Δ2‐norbornanethiazolines, a new class of bridgehead‐norbornane derivatives, have been studied and their cleavage mechanisms rationalised on the basis of the substituent shifts as well as on the identification of relevant peaks through accurate mass measurements and collision‐induced dissociation tandem mass spectrometric experiments. The fragmentation patterns of isomeric pairs of 6,6‐ and 10,10‐dimethylnorbornanethiazolines are almost identical, probably due to an initial isomerisation of molecular ion previous to the fragmentation. In general, the dominant peaks in the spectra of all the studied compounds originate from initial α‐cleavages of C(5)–C(6) or C(1)–C(10) bonds, followed by concomitant homolytic cleavage of C(1)–C(9) and C(7)–C(10) bonds. The driving force for this fragmentation pathway, directed by the gem‐dimethyl group, is the formation of a highly stabilised thiazolilmethyl cation which constitutes the base peak in all the spectra and allows the identification of these interesting ligands. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
The synthesis of polyfunctionalized 7‐amino‐5‐(4‐aroyl)‐1,3‐dimethyl‐2,4‐dioxo‐1,2,3,4,5,8‐hexahydropyrido[2,3‐d ]pyrimidine‐6‐carbonitrile derivatives by a green approach was achieved via one‐pot three‐component reaction of arylglyoxals, malononitrile, and 1,3‐dimethyl‐6‐aminouracil in the presence of urea as organocatalyst in EtOH:H2O (1:1) at 60°C. This protocol provides a mild and fast procedure to structurally diverse bicyclic pyridopyrimidines in good to excellent yields.  相似文献   

3.
The reaction of 4‐amino‐5,5‐dimethyl‐5H‐1,2‐oxathiole 2,2‐dioxide ( 1 ) with 2‐(arylidene)malononitriles 2 in ethanol, at reflux, using piperidine as catalyst, afforded 5‐amino‐3,3‐dimethyl‐7‐aryl‐3H‐[1,2]oxathiolo[4,3‐b]pyridine‐6‐carbonitrile 1,1‐dioxides ( 3 ) in moderate chemical yields.  相似文献   

4.
The study of inter‐conversion between molecules, especially biologically and pharmaceutically important molecules, is extremely important. This study reports the inter‐conversion between two azo‐derivtives: azo‐6‐aminouracils to azo‐barbituric acids. We successfully converted the 1,3‐dimethyl‐5‐(arylazo)‐6‐aminouracils ( Uazo‐1 to Uazo‐4 ) to 1,3‐dimethyl‐5‐(arylazo)‐barbituric acids ( BAazo‐1 to BAazo‐4 ) (where aryl?C6H5‐( 1 ); p‐MeC6H4‐( 2 ), p‐ClC6H4‐( 3 ), and p‐NO2C6H4‐( 4 )) following an acid‐hydrolysis path. The products were characterized using spectroscopic tools like UV‐vis, IR, and NMR spectroscopy. UV‐vis spectra of the as‐prepared dyes reveal that in contrast to the azo‐6‐aminouracils they are hardly responsive towards solvatochromism. IR spectra exhibit three characteristic >C?O frequencies for as‐prepared azobarbituric acids instead of two for mother azo‐6‐aminouracils. 1H NMR spectra which reflect the existence of solution species evidence the absence of >C?NH group (characteristic imido‐H at the 6‐position of hydrazone species of azo‐6‐aminouracils) and consequence presence of >C?O group at the same position in as‐prepared azobarbituric acids. They exhibit structural emissions in the range of 400–440 nm upon excitation at 360 nm. The determined acid dissociation constant (pKa) values of BAazos increase according to the following sequence: BAazo ‐ 2 > 1 > 3 > 4 .  相似文献   

5.
The fragmentation pathways in electron ionization (EI) mass spectra of a series of new N(5)‐oxides of alloxazines and iso‐alloxazine are presented, and compared with those of substituted alloxazines and iso‐alloxazine. The EI mass spectra of these compounds showed characteristic fragmentation pathways A, B and C, started by the ejection of atomic oxygen, a HNCO molecule and an OH . radical, respectively. On the basis of B/E and B2/E spectra, the mechanism of elimination of the OH . radical is discussed. The influence of the methyl substituent in the benzene ring of alloxazine on the mass fragmentation pathways is described. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
The syntheses of phenacyl N‐(2,2‐dimethyl‐2H‐azirin‐3‐yl)‐L ‐prolinate and allyl N‐(2,2‐dimethyl‐2H‐azirin‐3‐yl)‐L ‐prolinate are reported. Reactions of these 2H‐azirin‐3‐amine derivatives with Z‐protected amino acids have shown them to be suitable synthons for the Aib‐Pro unit in peptide synthesis. After incorporation into the peptide by means of the ‘azirine/oxazolone method’, the C‐termini of the resulting peptides were deprotected selectively with Zn in AcOH or by a mild Pd0‐promoted procedure, respectively.  相似文献   

7.
A convenient procedure for highly efficient chemoselective cyclization of threo‐(1S,2S)‐2‐amino‐1‐(4‐nitrophenyl)propane‐1,3‐diol with some ketones was described. The structures of the condensates were elucidated on the basis of the IR, 1H‐ and 13C‐NMR, and mass spectra. Ring‐ring tautomerism in 2‐aminopropane‐1,3‐diol chemistry is reported for the first time.  相似文献   

8.
A diastereoselective coupling of dimethyl malonate with N‐(tert‐butyl)sulfinyl imines under solvent‐free conditions was developed, using NaHCO3 or NaI as base promoters. The resulting dimethyl 2‐(1‐aminoalkyl)malonates could be easily transformed successively to β‐amino esters and the corresponding β‐lactams with high optical purity.  相似文献   

9.
Several (2‐amino‐4H‐1‐benzopyran‐4‐yl)phosphonates were efficiently synthesized by employing a multicomponent protocol involving a salicylaldehyde, malononitrile or ethyl cyanoacetate, and a trialkyl phosphite in polyethylene glycol. The latter could be recovered and re‐used. No additional solvent or catalyst was required. To the best of our knowledge, this is the first report of the one‐pot preparation of (2‐amino‐4H‐1‐benzopyran‐4‐yl)phosphonic acid dimethyl esters.  相似文献   

10.
The synthesis of new pyrazolo[4,3‐c]β‐carbolines ( 8a,b ) is achieved by condensation of the appropriate aldehyde with 3‐(4‐amino‐1,3‐dimethylpyrazol‐5‐yl)indole ( 4 ) under Pictet‐Spengler reaction conditions. Regioselective cyclization occurred at the usual indole C‐2 position as evidenced from the 1H‐and 13C nmr spectra of 8a,b which lack the pyrrolic H‐2 signal, present in 4 (δ 7.26, 1H, d, Jch‐NH = 2‐5 Hz).  相似文献   

11.
Twelve compounds unknown in the literature N‐(E)‐2‐stilbenyloxymethylenecarbonyl substituted hydrazones of 2‐, 3‐ and 4‐pyridinecarboxaldehydes, as well as methyl‐3‐pyridylketone have been prepared. The stereochemical behavior of these compounds in dimethyl‐d6 sulfoxide solution has been studied by 1H NMR technique. The E geometrical isomers and cis/trans amide conformers have been found for N‐substituted hydrazones 1–12. EI induced mass spectral fragmentation of these compounds were also investigated. The data obtained create the basis for distinguishing isomers.  相似文献   

12.
4‐Antipyrine [4‐amino‐1,5‐dimethyl‐2‐phenyl‐1H‐pyrazol‐3(2H)‐one] and its derivatives exhibit a range of biological activities, including analgesic, antibacterial and anti‐inflammatory, and new examples are always of potential interest and value. 2‐(4‐Chlorophenyl)‐N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)acetamide, C19H18ClN3O2, (I), crystallizes with Z′ = 2 in the space group P, whereas its positional isomer 2‐(2‐chlorophenyl)‐N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)acetamide, (II), crystallizes with Z′ = 1 in the space group C2/c; the molecules of (II) are disordered over two sets of atomic sites having occupancies of 0.6020 (18) and 0.3980 (18). The two independent molecules of (I) adopt different molecular conformations, as do the two disorder components in (II), where the 2‐chlorophenyl substituents adopt different orientations. The molecules of (I) are linked by a combination of N—H…O and C—H…O hydrogen bonds to form centrosymmetric four‐molecule aggregates, while those of (II) are linked by the same types of hydrogen bonds forming sheets. The related compound N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)‐2‐(3‐methoxyphenyl)acetamide, C20H21N3O3, (III), is isomorphous with (I) but not strictly isostructural; again the two independent molecules adopt different molecular conformations, and the molecules are linked by N—H…O and C—H…O hydrogen bonds to form ribbons. Comparisons are made with some related structures, indicating that a hydrogen‐bonded R22(10) ring is the common structural motif.  相似文献   

13.
The condensation of 4‐amino‐5‐mercapto‐3‐(2‐phenylquinolin‐4‐yl)/3‐(1‐p‐chlorophenyl‐5‐methyl‐1,2,3‐triazol‐4‐yl)‐1,2,4‐triazoles 1a‐b with chloroacetaldehyde 2a‐b , ω‐bromo‐ω‐(1H‐1,2,4‐triazol‐1‐yl)acetophenone 3a‐b , chloranil 4a‐b , 2‐bromocyclohexanone 5a‐b , 2,4′‐dibromoacetophenone 6a‐b and 2‐bromo‐6′‐methoxy‐2′‐acetonaphthone 7a‐b are described. The structures of the compounds synthesized were confirmed by elemental analyses, IR, 1H NMR and mass spectra. The antibacterial activities were also evaluated.  相似文献   

14.
The reaction of 2‐acylamino‐4,5‐dihydro‐3‐furancarbonitriles 1 with sodium iodide in N,N‐dimethyl‐formamide gave the corresponding 1‐acyl‐2‐oxo‐3‐pyrrolidinecarbonitriles 2 in good yields. Successive treatment of 1 with titanium(IV) chloride and potassium carbonate resulted in the formation of N‐acyl‐1‐cyanocyclopropanecarboxamides 4 . The same compounds 2 were also obtained by treatment of 4 with sodium iodide. The starting compounds 1 were synthesized by the reaction of 2‐amino‐4,5‐dihydro‐3‐furan‐carbonitrile with acyl chlorides in pyridine.  相似文献   

15.
The preparation of three new N‐Fmoc‐protected (Fmoc=[(9H‐fluoren‐9‐yl)methoxy]carbonyl) β2‐homoamino acids with proteinogenic side chains (from Ile, Tyr, and Met) is described, the key step being a diastereoselective amidomethylation of the corresponding Ti‐enolates of 3‐acyl‐4‐isopropyl‐5,5‐diphenyloxazolidin‐2‐ones with CbzNHCH2OMe/TiCl4 (Cbz=(benzyloxy)carbonyl) in yields of 60–70% and with diastereoselectivities of >90%. Removal of the chiral auxiliary with LiOH or NaOH gives the N‐Cbz‐protected β‐amino acids, which were subjected to an N‐Cbz/N‐Fmoc (Fmoc=[(9H‐fluoren‐9‐yl)methoxy]carbonyl) protective‐group exchange. The method is suitable for large‐scale preparation of Fmoc‐β2hXaa‐OH for solid‐phase syntheses of β‐peptides. The Fmoc‐amino acids and all compounds leading to them have been fully characterized by melting points, optical rotations, IR, 1H‐ and 13C‐NMR, and mass spectra, as well as by elemental analyses.  相似文献   

16.
1H, 13C and two‐dimensional NMR analyses were applied to determine the NMR parameters of 6‐(2′,3′‐dihydro‐1′H‐inden‐1′‐yl)‐1H‐indene. The measurements were accomplished with 0.5 mg of the substance, this quantity being sufficient to determine the chemical shifts of all the H and C atoms, and also the appropriate coupling constants and to give the complete NMR resonance assignments of the molecule. The predicted patterns of the four different H atoms of the methylene groups of the indane structural element coincided completely with the complex patterns in the NMR spectra. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
The 5,5‐dimethylpyrazolidin‐3‐one ( 4 ), prepared from ethyl 3‐methylbut‐2‐enoate ( 3 ) and hydrazine hydrate, was treated with various substituted benzaldehydes 5a – i to give the corresponding (1Z)‐1‐(arylmethylidene)‐5,5‐dimethyl‐3‐oxopyrazolidin‐1‐ium‐2‐ide azomethine imines 6a – i . The 1,3‐dipolar cycloaddition reactions of azomethine imines 6a – h with dimethyl acetylenedicarboxylate (=dimethyl but‐2‐ynedioate; 7 ) afforded the corresponding dimethyl pyrazolo[1,2‐a]pyrazoledicarboxylates 8a – h , while by cycloaddition of 6 with methyl propiolate (=methyl prop‐2‐ynoate; 9 ), regioisomeric methyl pyrazolo[1,2‐a]pyrazolemonocarboxylates 10 and 11 were obtained. The regioselectivity of cycloadditions of azomethine imines 6a – i with methyl propiolate ( 9 ) was influenced by the substituents on the aryl residue. Thus, azomethine imines 6a – e derived from benzaldehydes 5a – e with a single substituent or without a substituent at the ortho‐positions in the aryl residue, led to mixtures of regioisomers 10a – e and 11a – e . Azomethine imines 6f – i derived from 2,6‐disubstituted benzaldehydes 5f – i gave single regioisomers 10f – i .  相似文献   

18.
β‐Amino acids 1 – 3 with OH and F substituents in the α‐position have been prepared (Scheme) from the natural (S)‐α‐amino acids alanine, valine, and leucine, and incorporated into β‐hexa‐ and β‐heptapeptides 4 – 12 . The peptide syntheses were performed according to a conventional solution strategy (Boc/Bn protection) with fragment coupling. The new β‐peptides with (series a ) and without (series b ) terminal protection were isolated in HPLC‐pure form and characterized by NMR spectroscopy and MALDI mass spectrometry. The chemical properties as well as the patterns of the CD spectra (Figs. 3–5) depend upon constitution (OH, F, F2 substitution) and configuration (l or u) of the amino acid residues, upon the total number of OH and F substituents in the peptide chain, and upon the solvent used (H2O, MeOH, CF3CH2OH, (CF3)2CHOH). No reliable clues regarding the structures can be obtained from these CD spectra. Only a full NMR analysis will be able to answer the questions: a) with which known secondary structures (Figs. 1 and 2) of β‐peptides are the OH and F derivatives compatible? b) Are new secondary structures enforced by the polar and/or H‐bonding backbone substituents? Furthermore, the β‐peptides described here will enable us to study changes in chemical, enzymatic, and metabolic stability, and in physiological properties caused by the heteroatoms.  相似文献   

19.
The condensation reactions of 6,8‐dimethyl‐4‐oxo‐4H‐1‐benzopyran‐3‐carboxaldehyde ( 1 ) with equimolar amounts of ethyl 2‐amino‐4‐(4‐chlorophenyl)‐5‐cyano‐1‐[(5,6‐diphenyl‐1,2,4‐triazin‐3‐yl)amino]‐6‐oxo‐1,6‐dihydropyridine‐3‐carboxylate ( 2 ) at different reaction conditions gave different chromanone and chromenone products 3 , 4 , 5 . Also, the condensation reactions of compound 1 with ethyl 5‐cyano‐1,2‐diamino‐4‐(3‐nitrophenyl)‐6‐oxo‐1,6‐dihydropyridine‐3‐carboxylate ( 6 ) in absolute ethanol, dry benzene, acetic acid, and/or dry xylene gave a variety of products 7 , 8 , 9 , 10 depending on the solvent used.  相似文献   

20.
In the crystal structures of 2‐amino‐4,6‐dimethoxypyrimidinium 2,4,6‐trinitrophenolate (picrate), C6H10N3O2+·C6H2N3O7, (I), and 2,4‐diamino‐5‐(4‐chlorophenyl)‐6‐ethylpyrimidin‐1‐ium (pyrimethaminium or PMN) picrate dimethyl sulfoxide solvate, C12H14ClN4+·C6H2N3O7·C2H6OS, (II), the 2‐amino‐4,6‐dimethoxypyrimidine and PMN cations are protonated at one of the pyrimidine N atoms. The picrate anion interacts with the protonated cations through bifurcated N—H...O hydrogen bonds, forming R21(6) and R12(6) ring motifs. In (I), Z′ = 2. In (II), two inversion‐related PMN cations are connected through a pair of N—H...N hydrogen bonds involving the 4‐amino group and the uncharged N atom of the pyrimidine ring, forming a cyclic hydrogen‐bonded R22(8) motif. In addition to the pairing, the O atom of the dimethyl sulfoxide solvent molecule bridges the 2‐amino and 4‐amino groups on both sides of the paired bases, resulting in a self‐complementary …DADA… array of quadruple hydrogen‐bonding patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号