首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
《物理》2011,(7):482-483
光物理实验室最早是经中国科学院组织专家论证并批准成立的部门实验室,于1994年12月正式对国内外开放,2001年11月按中国科学院的统一要求更名为中国科学院物理研究所光物理重点实验室。杨国桢院士出任首届实验室主任,之后,分别由张  相似文献   

2.
中国科学院激发态物理重点实验室(以下简称实验室)始建于1989年,是国内惟一专门从事发光学及其应用研究的中国科学院开放实验室。徐叙院士是实验室的创始人和第一届主任,黄昆院士为实验室顾问(1989.4~1993.6)。现任实验室主任为申德振研究员。实验室依托于中国科学院长春光学  相似文献   

3.
《发光学报》2007,28(5):819-819
中国科学院激发态物理重点实验室(以下简称实验室)始建于1989年,是国内惟一专门从事发光学及其应用研究的中国科学院开放实验室。徐叙珞院士是实验室的创始人和第一届主任,黄昆院士为实验室顾问(1989.4~1993.6)。现任实验室主任为申德振研究员。实验室依托于中国科学院长春光  相似文献   

4.
《发光学报》2007,28(2):286-286
中国科学院激发态物理重点实验室(以下简称实验室)始建于1989年,是国内惟一专门从事发光学及其应用研究的中国科学院开放实验室。徐叙2院士是实验室的创始人和第一届主任,黄昆院士为实验室顾问(1989.4~1993.6)。现任实验室主任为申德振研究员。实验室依托于中国科学院长春光学  相似文献   

5.
《发光学报》2006,27(3):429-429
中国科学院激发态物理重点实验室(以下简称实验室)始建于1989年,是国内惟一专门从事发光学及其应用研究的中国科学院开放实验室。徐叙院士是实验室的创始人和第一届主任,黄昆院士为实验室顾问(1989.4~1993.6)。现任实验室主任为申德振研究员。实验室依托于中国科学院长春光学  相似文献   

6.
《发光学报》2006,27(2):276-276
中国科学院激发态物理重点实验室(以下简称实验室)始建于1989年,是国内惟一专门从事发光学及其应用研究的中国科学院开放实验室。徐叙院士是实验室的创始人和第一届主任,黄昆院士为实验室顾问(1989.4~1993.6)。现任实验室主任为申德振研究员。实验室依托于中国科学院长春光学  相似文献   

7.
《发光学报》2006,27(1):139-139
中国科学院激发态物理重点实验室(以下简称实验室)始建于1989年,是国内惟一专门从事发光学及其应用研究的中国科学院开放实验室。徐叙院士是实验室的创始人和第一届主任,黄昆院士为实验室顾问(1989.4~1993.6)。现任实验室主任为申德振研究员。实验室依托于中国科学院长春光学  相似文献   

8.
《发光学报》2008,29(5)
中国科学院激发态物理重点实验室(以下简称实验室)始建于1989年,是国内惟一专门从事发光学及其应用研究的中国科学院开放实验室。徐叙2院士是实验室的创始人和第一届主任,黄昆院士为实验室顾问(1989.4~1993.6)。现任实验室主任为申德振研究员。实验室依托于中国科学院长春光学  相似文献   

9.
《发光学报》2004,25(5):609-609
中国科学院长春光学精密机械与物理研究所激发态物理重点实验室(以下简称实验室)是中国科学院开放实验室,成立于1989年,徐叙珞院士是实验室创始人和第一届主任(1989.4~1993.6)。实验室位于长春经济技术开发区中国科学院光电子产业园区内,依托于中国科学院长春光学精密机械与物理研究所,现任实验室主任为申德振研究员。  相似文献   

10.
《发光学报》2004,25(2):218-218
中国科学院长春光学精密机械与物理研究所激发态物理重点实验室(以下简称实验室)是中国科学院开放实验室,成立于1989年,徐叙瑢院士是实验室创始人和第一届主任(1989.4-1993.6)。实验室位于长春经济技术开发区中国科学院光电子产业园区内,依托于中国科学院长春光学精密机械与物理研究所,现任实验室主任为申德振研究员。  相似文献   

11.
David Finkelstein was very fond of the new information-theoretic paradigm of physics advocated by John Archibald Wheeler and Richard Feynman. Only recently, however, the paradigm has concretely shown its full power, with the derivation of quantum theory (Chiribella et al., Phys. Rev. A 84:012311, 2011; D’Ariano et al., 2017) and of free quantum field theory (D’Ariano and Perinotti, Phys. Rev. A 90:062106, 2014; Bisio et al., Phys. Rev. A 88:032301, 2013; Bisio et al., Ann. Phys. 354:244, 2015; Bisio et al., Ann. Phys. 368:177, 2016) from informational principles. The paradigm has opened for the first time the possibility of avoiding physical primitives in the axioms of the physical theory, allowing a re-foundation of the whole physics over logically solid grounds. In addition to such methodological value, the new information-theoretic derivation of quantum field theory is particularly interesting for establishing a theoretical framework for quantum gravity, with the idea of obtaining gravity itself as emergent from the quantum information processing, as also suggested by the role played by information in the holographic principle (Susskind, J. Math. Phys. 36:6377, 1995; Bousso, Rev. Mod. Phys. 74:825, 2002). In this paper I review how free quantum field theory is derived without using mechanical primitives, including space-time, special relativity, Hamiltonians, and quantization rules. The theory is simply provided by the simplest quantum algorithm encompassing a countable set of quantum systems whose network of interactions satisfies the three following simple principles: homogeneity, locality, and isotropy. The inherent discrete nature of the informational derivation leads to an extension of quantum field theory in terms of a quantum cellular automata and quantum walks. A simple heuristic argument sets the scale to the Planck one, and the currently observed regime where discreteness is not visible is the so-called “relativistic regime” of small wavevectors, which holds for all energies ever tested (and even much larger), where the usual free quantum field theory is perfectly recovered. In the present quantum discrete theory Einstein relativity principle can be restated without using space-time in terms of invariance of the eigenvalue equation of the automaton/walk under change of representations. Distortions of the Poincaré group emerge at the Planck scale, whereas special relativity is perfectly recovered in the relativistic regime. Discreteness, on the other hand, has some plus compared to the continuum theory: 1) it contains it as a special regime; 2) it leads to some additional features with GR flavor: the existence of an upper bound for the particle mass (with physical interpretation as the Planck mass), and a global De Sitter invariance; 3) it provides its own physical standards for space, time, and mass within a purely mathematical adimensional context. The paper ends with the future perspectives of this project, and with an Appendix containing biographic notes about my friendship with David Finkelstein, to whom this paper is dedicated.  相似文献   

12.
图象处理法是物理竞赛中常用的处理方法,主要表现在图象的"面积"与图象的交点两个方面.  相似文献   

13.
14.
<正>Monthly,founded in 1977Published monthly in hard copy by Science Press and online by the Institute of High Energy Physics of the Chinese Academy of Sciences(domestic)and by IOP Publishing,Temple Circus,Temple Way,Bristol BS1 6HG,UK(international).  相似文献   

15.
16.
17.
Contrary to claims about the irrelevance of philosophy for science, I argue that philosophy has had, and still has, far more influence on physics than is commonly assumed. I maintain that the current anti-philosophical ideology has had damaging effects on the fertility of science. I also suggest that recent important empirical results, such as the detection of the Higgs particle and gravitational waves, and the failure to detect supersymmetry where many expected to find it, question the validity of certain philosophical assumptions common among theoretical physicists, inviting us to engage in a clearer philosophical reflection on scientific method.  相似文献   

18.
左庆峰 《物理通报》2012,(5):117-120
在实施新课程改革的大背景下,运用理论与实践相结合的方法就物理美学对物理教学的意义做了论述,以引起同行们对物理美学研究及其应用的关注.  相似文献   

19.
目前很多中学的物理教育中存在着不尽如人意之处,如初中阶段不求甚解的记忆,高中阶段大量的习题操练,更为严重的是,物理教师的物理精神越来越淡漠,教学成了解题训练,缺乏“假设-实验-观察-探索”的精神,没有真正将学生领进物理学大门.那么,教师怎样才能很好地传承物理精神。将学生带进奇妙的物理世界呢?  相似文献   

20.
 用物理方法解释了一些图片中的现象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号