首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 936 毫秒
1.
研究了N,N,N′,N′-四辛基-3-氧戊二酰胺(TODGA)溶于疏水性离子液体咪唑类离子液体1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐([C2mim][NTf2])中对硝酸水溶液体系中四价钍离子(Th4+)的萃取行为。详细考察了接触时间、酸度、Th4+浓度、TODGA浓度、温度对TODGA/[C2mim][NTf2]体系萃取性能的影响。作为对比,我们还考察了TODGA在传统有机溶剂异辛烷中对Th4+的萃取。结果表明:TODGA/[C2mim][NTf2]体系对Th4+的萃取是吸热反应,且在50℃下,能在5 min内达到平衡。萃取体系随着酸度对Th4+的萃取性能先降后增大;Th4+浓度的增大,TODGA浓度的降低,对Th4+的萃取性能下降。TODGA在离子液体萃取体系中比在有机体系中有更好的Th4+萃取效果,特别是在低酸条件下。通过萃取机理研究,推测出在低酸下萃取反应是离子交换且TODGA与Th4+配比为2∶1,在高酸下萃取是中性配位。  相似文献   

2.
不同稀释剂中HDEHP的界面性质研究   总被引:2,自引:0,他引:2  
用滴体积法研究了HDEHP在不同稀释剂-0.05mol.dm^-^3(N2, Na2)SO4(pH=2.40)体系中的界面性质, 认为吸附于液-液界面的是单体HDEHP分子, 得到了各体系中HDEHP的Cmin, Tmax, Ai以及△Gad等界面吸附参数。HDEHP在不同稀释剂体系中的界面活性顺序为: 脂肪烃>芳香烃>氯仿>甲基异丁基酮, 这种变化主要是在体相中和界面上稀释剂与萃取剂、界面上的萃取剂及稀释剂与界面层水之间分子间相互作用的结果。同时讨论了HDEHP在不同稀释剂中的萃取动力学机理。  相似文献   

3.
研究了伯胺 N192 3在不同稀释剂 /0 .1 mol/L(H,Na) NO3(p H=2 .3 4)体系中的界面性质 ,计算了界面吸附特性参数 cmin和 AI.N192 3在不同稀释剂体系中的界面活性顺序为 :正庚烷 >环己烷 >苯 >甲苯 >四氯化碳 >氯仿 >醋酸异戊酯 >甲基异丁基酮 (MIBK) .这一结果可能与稀释剂和萃取剂、稀释剂和有机相中增溶水及萃取剂和界面层水分子之间的相互作用有关 .对有关结果及其与萃取性能的关系做了分析和讨论  相似文献   

4.
在不同稀释剂体系中研究了N,N,N′,N′-四丁基-3-氧戊二酰胺(TBDGA)从硝酸介质中萃取Gd髥离子的性能及反应机理。考察了水相硝酸浓度、萃取剂浓度及温度对其萃取性能的影响。实验表明在不同稀释剂中TBDGA对Gd髥的萃取能力为:二甲苯四氯化碳甲苯氯仿,分配比在所研究酸度范围内都随硝酸浓度的增加而增大。在不同稀释剂中萃取机理是相同的,萃合物的组成为Gd(NO3)3·3TBDGA;萃取Gd(Ⅲ)离子的反应为放热反应,低温有利于萃取。萃合物的IR光谱表明羰基氧与Gd(Ⅲ)发生配位。  相似文献   

5.
腐殖酸对La~(3+),Nd~(3+)等重金属离子混合体系吸附的研究   总被引:1,自引:0,他引:1  
对含有La~(3+),Nd~(3+)的重金属混合体系进行吸附选择性试验,筛选出腐殖酸浓度为1.2 g·L~(-1)时吸附La~(3+),Nd~(3+)的最佳条件(pH=5.4,温度313 K,振荡时间8 h,重金属离子初始浓度0.15 mmol·L~(-1)),得出此条件下吸附优先顺序为:La~(3+)>Pb~(2+)>Cu~(2+)>Nd~(3+)>Cd~(2+)>Zn~(2+)>Co~(2+)>Cr~(3+);HA的吸附总量在室温下拟合二级动力学方程的效果最好;Langmuir方程则能更好地描述HA对重金属离子的等温吸附过程,并且随着温度的升高,HA的最大吸附量逐渐增加;HA对La~(3+),Nd~(3+)等重金属离子的吸附优先顺序受到pH值、温度、振荡时间、重金属离子初始浓度和本身性质的综合影响,且重金属的地球化学性质是主导因素.  相似文献   

6.
研究了N,N,N',N'-四辛基-3-氧戊二酰胺(TODGA)溶于疏水性离子液体咪唑类离子液体1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐([C2mim][NTf2])中对硝酸水溶液体系中四价钍离子(Th4+)的萃取行为.详细考察了接触时间、酸度、Th4+浓度、TODGA浓度、温度对TODGA/[C2mim][NTf2]体系萃取性能的影响.作为对比,我们还考察了TODGA在传统有机溶剂异辛烷中对Th4+的萃取.结果表明:TODGA/[C2mim][NTf2]体系对Th4+的萃取是吸热反应,且在50 ℃下,能在5 min内达到平衡.萃取体系随着酸度对Th4+的萃取性能先降后增大;Th4+浓度的增大,TODGA浓度的降低,对Th4+的萃取性能下降.TODGA在离子液体萃取体系中比在有机体系中有更好的Th4+萃取效果,特别是在低酸条件下.通过萃取机理研究,推测出在低酸下萃取反应是离子交换且TODGA与Th4+配比为2∶1,在高酸下萃取是中性配位.  相似文献   

7.
研究 N5O3- TRPO混合萃取剂从碱性氰化液中萃取金 ,考察了平衡时间、水相初始 PH值、水相离子强度、金浓度、N5 0 3浓度、磷类添加剂的种类及其浓度、稀释剂、温度、相比等因素对金萃取率的影响 ,绘制了萃取等温线 ,测定了金的饱和容量 ,考察了所选定的萃取体系对银 ( )、铁 ( )、铜 ( )、镍 ( )、锌 ( )的萃取性能 ,计算出了金与这些杂质元素的分离系数。研究了负载有机相中金的反萃。结果表明 N5O3- TRPO ROH正十二烷体系对 Au( CN) 2 具有较高的萃取率和选择性 ,可应用于碱性氰化液中金的萃取分离。  相似文献   

8.
全氟辛酸钠和溴化烷基三甲铵混合水溶液的界面化学性质   总被引:2,自引:1,他引:2  
测定了一系列不同比例的C_7F_(15)COONa与阳离子表面活性剂(C_3H_(17)N(CH_3)Br、C_(10)H_(21)N(CH_3)_3Br和C_(12)H_(25)N(CH_3)_3Br)混合水溶液(加NaBr, 恒离子强度μ=0.1 mol kg~(-1))的表面张力及正庚烷/水溶液界面张力。结果表明: 在表面上, 随阳离子表面活性剂碳氢链长增加, 各体系同一比例的饱和总吸附量增大。界面上, 7CFNa~C_8NBr体系的吸附规律与表面相似; 7CFNa~C_(10)NBr体系饱和总吸附量在1:1时最小; 而7CFNa~C_(12)NBr体系, 其饱和吸附量随7CFNa比例减小而减小。混合物的表(界)面活性均比单一表面活性剂高。随着阳离子表面活性剂碳氢链增加, 混合溶液降低表面张力的能力有所下降, 而降低表面张力的效率有所提高, 自表面吸附层结构与表面张力的关系对比作了说明。  相似文献   

9.
本文研究了CMPO[辛基(苯基)-N,N-二异丁基氨甲酰基甲基氧化膦]溶于疏水性离子液体BmimNTf2(1-丁基-3-甲基咪唑双三氟甲磺亚酰胺盐)和BmimPF6(1-丁基-3-甲基咪唑六氟磷酸盐)对硝酸水溶液体系中Ce3+的萃取行为,详细考察了稀释剂、酸度、金属离子浓度、盐析剂、萃取剂浓度、温度等对萃取性能的影响。研究结果表明:离子液体BmimNTf2体系中Ce3+的萃取率远高于BmimPF6体系;硝酸浓度、金属离子浓度的增大会导致萃取率下降;温度升高萃取率降低;萃取剂CMPO浓度升高萃取率增大;而盐析剂(C=0.001~1 mol.L-1时)对Ce3+的萃取几乎没有影响。萃取机理的推测表明萃取反应形成三配位的配合物,其结构为Ce3+.3CMPO,萃取平衡常数为lgK=6.49,反应焓变为-47.29 kJ.mol-1。  相似文献   

10.
HDEHP和HEHEHP界面性质及添加剂对界面性质的影响   总被引:1,自引:0,他引:1  
测定了HDEHP、HEHEHP、TOPO、TBP、SDS和CTMAB的煤油溶液与硫酸盐水溶液所构成的液-液体系的界面张力,考察了水相pH对界面张力的影响,求得这些化合物的界面吸附常数,计算出饱和吸附时界面吸附分子的截面积,提出了用Cmin计算活性剂分配比的方法,研究了向HDEHP或HEHEHP体系中添加TOPO(或TBP)、SDS、CTMAB时界面张力的变化及其对萃取速率的影响。界面化学反应控制的萃取金属阳离子过程的速率将因添加剂占据界面和(或)形成界面负电层而降低,因添加剂与萃取剂形成界面活性较强的分子缔合物对金属的萃取而提高。  相似文献   

11.
The resistance of a novel silica-based N,N,N′,N′-tetraoctyl-3-oxapentane-1,5-diamide (TODGA) polymeric adsorption material (TODGA/SiO2-P) against nitric acid, temperature and γ-irradiation had been investigated. The adsorption property of the treated TODGA/SiO2-P was evaluated by a 3 M HNO3 solution containing 0.01 M Nd(III). It was found that both 3 and 0.01 M HNO3 concentrations did not decrease the stability of TODGA/SiO2-P at 25°C. The quantity of TODGA leaked from TODGA/SiO2-P was equivalent to its solubility in the corresponding HNO3 aqueous solution. The effect of 3 M HNO3 on the leakage of TODGA at 80°C was significantly higher than that in 0.01 M HNO3 as well as in all cases at 25°C. The amount of Nd(III) adsorbed towards the treated TODGA/SiO2-P was determined in the range of 0.143–0.148 mmol/g for the HNO3 concentration effect and 0.142–0.0506 mmol/g for the temperature effect. γ-Irradiation showed a more noticeable destruction effect on TODGA/SiO2-P. The content of TODGA leaked increased with an increase in the γ-irradiation dose (ID) from 1.06 to 3.72 MGy in terms of the linear equation [TODGA]=794.5ID+84.0. The amount of Nd(III) adsorbed onto the irradiated TODGA/SiO2-P decreased rapidly from 0.134 to 0.0438 mmol/g, which was lower than 0.153 mmol/g, the adsorption of fresh TODGA/SiO2-P for Nd(III), according to the equation QNd(III)=−0.0301ID+0.160, showing that a large quantity of TODGA leaked from TODGA/SiO2-P. The adsorbed amount of Nd(III) decreased obviously in this order: the HNO3 concentration effect, temperature effect and γ-irradiation.  相似文献   

12.
The effects of diluents, temperature, acidity, and ionic strength of the aqueous phase on the interfacial properties of DEHEHP have been extensively investigated using the Du Nouy ring method. In addition, the effect of cerium(IV) concentration loaded in the organic phase on the interfacial tension has also been studied. With the increase of DEHEHP concentration, the value of interfacial tension (gamma) decreases in the studied system, which shows that DEHEHP has interfacial activity as a kind of surfactant. The surface excess at the saturated interface (Gamma(max)) and the minimum bulk concentration of the extractant necessary to saturate the interface (C(min)) under the different conditions are calculated according to two adsorption equations such as the Gibbs and Szyszkowski functions to be presented in comprehensive tables and figures. The relationship between the interfacial activity of DEHEHP and cerium(IV) extraction kinetics by DEHEHP has been discussed by considering different factors such as the effects of diluents and temperature. However, the interfacial activity parameter of extractant only is a qualitative parameter, but cannot provide strong enough evidence to quantitatively explain the relationship between extraction kinetics and interfacial properties of an extractant.  相似文献   

13.
N,N,N',N'-tetraoctyl diglycolamide abbreviated as TODGA, is one of the most promising extractant for actinide partitioning from high level nuclear waste. It forms reverse micelles in non polar solvents on equilibration with aqueous HNO(3) solutions. This reverse micellar system undergoes phase separation into dilute and concentrated reverse micellar solutions at high aqueous acid concentration. Small angle neutron scattering (SANS) studies reported in the literature explained this phenomenon based on gas-liquid type phase transition in the framework of Baxter adhesive hard sphere theory in the presence of a strong inter-micellar attractive interaction. The present investigation attempts to throw further light on this system by carrying out systematic dynamic light scattering (DLS) and viscometry studies, and their modeling on the TODGA reverse micellar solutions in the dodecane medium. The variation of the diffusion coefficient with the micellar volume fraction observed from the DLS studies is suggestive of the presence of an attractive interaction between the TODGA reverse micelles, which weakens at the high micellar volume fraction due to the increased dominance of the excluded volume effect. It is suggested that this weakened interaction is responsible for the absence of phase separation in this system at high TODGA concentration. The results thus highlight the importance of the presence of an attractive interaction between the TODGA micelles in determining the observed phase separation in the TODGA reverse micellar systems. The modeling of the DLS and viscosity data, however, suggest that the characteristic stickiness parameter of this system could be smaller than the critical value required for inducing a gas-liquid type phase transition.  相似文献   

14.
Two kinds of novel macroporous silica-based chelating polymeric adsorption materials, TODGA/SiO2-P and CMPO/SiO2-P, were synthesized by impregnating and immobilizing two chelating agents, N,N,N',N'-tetraoctyl-3-oxapentane-1,5-diamide (TODGA) and octyl(phenyl)-N,N-diisobutylcarbamoylmethylphoshine oxide (CMPO), into the pores of SiO2-P particles. To separate minor actinides (MA(III)) such as Am(III) and Cm(III), the adsorption and elution of 13 typically simulated fission products from a 3 M HNO3 were performed. It was found that in the first column packed with TODGA/SiO2-P, all of the simulated elements were separated effectively into four groups: (1) Cs(I), Mo(VI), and the most portion of Ru(III) (non-adsorption group), (2) Sr(II), small portion of Gd(III) and all of light REs(III) (MA-lRE-Sr group), (3) most of Gd(III) and all heavy RE(III) (hRE group), and (4) Zr(IV), Pd(II), and a little of Ru(III) (Zr-Pd group) by eluting with 3.0 M HNO3, 1.0M HNO3, distilled water, and 0.5 M H2C2O4, respectively, at 298 K. MA(III) was predicted to flow into the second group along with Nd(III) because of their close adsorption-elution onto TODGA/SiO2-P. In the second column packed with CMPO/SiO2-P, MA-lRE-Sr group was separated into (1) Sr(II), (2) middle RE(III) such as Gd(III), Eu(III), Sm(III), and quite small portion of Nd(III) (MA-mRE), and (3) light RE(III) such as La(III), Ce(III), and most of Nd(III) by eluting with 3.0 M HNO3 and 0.05 M DTPA-pH 2.0, respectively, at 323 K. MA(III) was believed to flow into MA-mRE group along with Gd(III) due to their similar adsorption properties towards CMPO/SiO2-P. Based on positions of MA(III) appeared in light and heavy RE(III), an improved MAREC process for MA(III) partitioning from HLW was proposed.  相似文献   

15.
Nitric acid plays an important role in the heterogeneous chemistry of the atmosphere. Reactions involving HNO(3) at aqueous interfaces in the stratosphere and troposphere depend on the state of nitric acid at these surfaces. The vapor/liquid interface of HNO(3)-H2O binary solutions and HNO(3)-H(2)SO(4)-H2O ternary solutions are examined here using vibrational sum frequency spectroscopy (VSFS). Spectra of the NO2 group at different HNO(3) mole fractions and under different polarization combinations are used to develop a detailed picture of these atmospherically important systems. Consistent with surface tension and spectroscopic measurements from other laboratories, molecular nitric acid is identified at the surface of concentrated solutions. However, the data here reveal the adsorption of two different hydrogen-bonded species of undissociated HNO(3) in the interfacial region that differ in their degree of solvation of the nitro group. The adsorption of these undissociated nitric acid species is shown to be sensitive to the H2O:HNO(3) ratio as well as to the concentration of sulfuric acid.  相似文献   

16.
β-Lactoglobulin adsorption layers at the interfaces solution/air, /tetradecan and /sunflower oil were characterised by dynamic interfacial tension measurements and harmonic drop oscillation experiments in a time scale of some seconds. Axialsymmetric drop shape analysis (ADSA) was used to calculate drop volume, area and interfacial tension. Within a definite range of drop volume amplitude, the oscillation of the surface tension is harmonic and interfacial dilation parameters can be determined. Dependence of the dilational parameters on the amplitude and frequency of drop volume oscillation were determined and methodical demands are given for this special kind of ADSA application. The concentration of interfacial saturation is minimal at the interface with sunflower oil. Interfacial dilational elasticities, and viscosities are maximal at the saturation concentration of all systems investigated. The dilational viscosities are maximal in the frequency range 0.007–0.011 Hz and characterise molecular rearrangement processes in the adsorption layer. Interfacial dilational elasticity and viscosity are the largest at the interface with air. They are the smallest at the interface with sunflower oil. Similarities and differences of the systems investigated are discussed by taking into account the adsorption behaviour and the solvatation of different apolar and polar parts of the protein molecules in the neighbouring phase.  相似文献   

17.
The distribution of proteins and lipids in food emulsions and foams is determined by competitive and cooperative adsorption between the two types of emulsifiers at the fluid-fluid interfaces, and by the nature of protein-lipid interactions, both at the interface and in the bulk phase. The existence of protein-lipid interactions can have a pronounced impact on the surface rheological properties of these systems. Therefore, these results are of practical importance for food emulsion formulation, texture, and stability. In this study, the existence of protein-lipid interactions at the interface was determined by surface dynamic properties (interfacial tension and surface dilational modulus). Systematic experimental data on surface dynamic properties, as a function of time and at long-term adsorption, for protein (whey protein isolate (WPI)), lipids (monoglycerides), and protein-lipid mixed films at the oil-water interface were measured in an automated drop tensiometer. The dynamic behaviour of protein+lipid mixed films depends on the adsorption time, the lipid and the protein/lipid ratio in a rather complicated manner. The protein determined the interfacial characteristics of the mixed film as the protein at WPI>/=10(-2)% wt/wt saturated the film, no matter what the concentration of the lipid. However, there exists a competitive or cooperative adsorption of the emulsifier (WPI and monoglycerides), as the concentration of protein in the bulk phase is far lower than that for interfacial saturation.  相似文献   

18.
利用界面扩张流变技术,研究了两性咪唑类离子液体表面活性剂1-磺丙基-3-十二烷基咪唑内盐(C12imSP)的界面聚集行为,探讨传统表面活性剂十二烷基硫酸钠(SDS)对C12imSP界面聚集行为的影响机制。 结果表明,少量SDS的加入可以填补界面上疏松的C12imSP分子间的空位,界面上形成表面活性剂混合吸附膜,界面张力显著降低;提高SDS的浓度,其分子从体相向界面层的扩散交换占优势,界面层分子逐渐达到饱和吸附,此后体系中有混合胶束形成。 体相胶束中富集的SDS分子对C12imSP分子的“收纳”作用及进一步的“挽留”作用,加之C12imSP分子本身相对较大的空间位阻效应导致界面上的C12imSP分子一旦通过扩散作用被交换至体相,其很难再回复到表面层,即界面膜以SDS分子为主。 通过调节体系中SDS的含量,可以实现对混合体系SDS/C12imSP/NaCl(0.1 mol/L)界面聚集行为的调控,进而实现对界面膜性质的调控。  相似文献   

19.
The adsorption dynamics of a series of phospholipids (PLs) at the interface between an aqueous solution or dispersion of the PL and a gas phase containing the nonpolar, nonamphiphilic linear perfluorocarbon perfluorohexane (PFH) was studied by bubble profile analysis tensiometry. The PLs investigated were dioctanoylphosphatidylcholine (DiC8‐PC), dilaurylphosphatidylcholine, dimyristoylphosphatidylcholine, and dipalmitoylphosphatidylcholine. The gas phase consisted of air or air saturated with PFH. The perfluorocarbon gas was found to have an unexpected, strong effect on both the adsorption rate and the equilibrium interfacial tension (γeq) of the PLs. First, for all of the PLs, and at all concentrations investigated, the γeq values were significantly lower (by up to 10 mN m?1) when PFH was present in the gas phase. The efficacy of PFH in decreasing γeq depends on the ability of PLs to form micelles or vesicles in water. For vesicles, it also depends on the gel or fluid state of the membranes. Second, the adsorption rates of all the PLs at the interface (as assessed by the time required for the initial interfacial tension to be reduced by 30 %) are significantly accelerated (by up to fivefold) by the presence of PFH for the lower PL concentrations. Both the surface‐tension reducing effect and the adsorption rate increasing effect establish that PFH has a strong interaction with the PL monolayer and acts as a cosurfactant at the interface, despite the absence of any amphiphilic character. Fitting the adsorption profiles of DiC8‐PC at the PFH‐saturated air/aqueous solution interface with the modified Frumkin model indicated that the PFH molecule lay horizontally at the interface.  相似文献   

20.
The thermodynamic equations for examining aggregate formation in an oil phase and adsorption at the oil/water interface of a nonionic solute were derived. The total differentials of chemical potentials of species and the oil/water interfacial tension were expressed as functions of temperature, pressure, and the total concentration of solute in the oil phase after explicit consideration of aggregate formation. The partial derivatives of the chemical potentials and the interfacial tension with respect to the independent variables were found to provide the thermodynamic quantities of aggregate formation and adsorption from oil phase to the interface by introducing the concept of an ideally dilute associated solution. These equations were applied to the cyclohexane solution of oleyl alcohol/water system, and the adsorption and aggregate formation was examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号