首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Poly(ethylene oxide)-b-poly(L-lactic acid) (PEO-PLLA) diblock copolymers were synthesized via a ring opening polymerization from poly(ethylene oxide) and l -lactide. Stannous octoate was used as a catalyst in a solution polymerization with toluene as the solvent. Their physicochemical properties were investigated by using infrared spectroscopy, 1H-NMR spectroscopy, gel permeation chromatography, and differential scanning calorimetry, as well as the observational data of gel-sol transitions in aqueous solutions. Aqueous solutions of PEO-PLLA diblock copolymers changed from a gel phase to a sol phase with increasing temperature when their polymer concentrations are above a critical gel concentration. As the PLLA block length increased, the gel-sol transition temperature increased. For comparison, diblock copolymers of poly(ethylene oxide)-b-poly(l -lactic acid-co-glycolic acid) [PEO-P(LLA/GA)] and poly(ethylene oxide)-b-poly(dl -lactic acid-co-glycolic acid) [PEO-P(DLLA/GA)] were synthesized by the same methods, and their gel-sol transition behaviors were also investigated. The gel-sol transition properties of these diblock copolymers are influenced by the hydrophilic/hydrophobic balance of the copolymer, block length, hydrophobicity, and stereoregularity of the hydrophobic block of the copolymer. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2207–2218, 1999  相似文献   

2.
The mixed micellar system comprising the poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)-based triblock copolymer (EO)(20)(PO)(70)(EO)(20) (P123) and the anionic surfactant sodium dodecyl sulfate (SDS) has been investigated in aqueous media by small-angle neutron scattering (SANS) and viscosity measurements. The aggregation number of the copolymer in the micelles decreases upon addition of SDS, but a simultaneous enhancement in the degree of micellar hydration leads to a significant increase in the micellar volume fraction at a fixed copolymer concentration. This enhancement in the micellar hydration leads to a marked increase in the stability of the micellar gel phase until it is destroyed at very high SDS concentration. Mixed micellar systems with low and intermediate SDS concentrations form the micellar gel phase in much wider temperature and copolymer concentration ranges than the pure copolymer micellar solution. A comparison of the observed results with those for the copolymers (EO)(26)(PO)(40)(EO)(26) (P85) and (EO)(99)(PO)(70)(EO)(99) (F127) suggests that the composition of the copolymers plays a significant role in determining the influence of SDS on the gelation characteristics of the aqueous copolymer solutions. Copolymers with high PO/EO ratios show an enhancement in the stability of the gel phase, whereas copolymers with low PO/EO ratios show a deterioration of the same in the presence of SDS.  相似文献   

3.
Ring-opening polymerization of D,L-lactide was carried out in the presence of monohydroxylated poly(ethylene glycol) (PEG) with Mn of 2000 and 5000, using zinc powder as catalyst. The resulting PEG-b-polylactide (PEG-PLA) diblocks with various ethylene oxide/lactyl (EO/LA) ratios were coupled with adipoyl chloride to yield PEG-PLA-PEG triblock copolymers. N-Dimethylaminopyridine (DMAP) was used as catalyst. The obtained PEG-PLA-PEG triblock copolymers were characterized by various analytical techniques such as IR, 1H NMR, size exclusion chromatography, X-ray diffraction, and differential scanning calorimetry. Data showed that all the copolymers were semicrystalline with the PEG-type crystalline structure, the crystallinity decreasing with increasing PLA block length. Bioresorbable hydrogels were prepared from the water-soluble triblock copolymers. Rheological measurements showed a gel-sol transition with increasing temperature and gelation was found to be thermoreversible. The copolymer solution behaves like a viscoelastic liquid above the gel point and like a viscoelastic solid below the gel point. The critical gelation concentration, the gel-sol transition temperature at a given concentration, and corresponding moduli depend on both the EO/LA ratio and the molecular weight of the copolymers. It is assumed that gelation results from interactions between PEG blocks at low temperatures and that these interactions are disrupted as the temperature is elevated. The shrinking of PEG blocks with increasing temperature seems to be in agreement with the variation of the gel-sol transition temperatures.  相似文献   

4.
The rheology of the aqueous solution of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (PEO?PPO?PEO) triblock copolymer, Pluronic F68 in the presence of KF was studied in the temperature range from 15 to 60°C. The variation of the shear stress according to the shear rate shows that independently from the temperature and concentration, the F68 solutions exhibit a Newtonian behavior. The results show that the Critical Micelle Temperature of Pluronic F68 in a KF aqueous solution decreases with the increase in the salt concentration.  相似文献   

5.
Amphiphilic triblock copolymers of poly(methyl methacrylate)-b-poly(ethylene oxide)-b-poly(methyl methacrylate) (PMMA-b-PEO-b-PMMA) with well-defined structure were synthesized via atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) initiated by the PEO macroinitiator. The macroinitiator and triblock copolymer with different PMMA and/or PEO block lengths were characterized with 1H and 13C NMR and gel permeation chromatography (GPC). The micelle formed by these triblock copolymers in aqueous solutions was detected by fluorescence excitation and emission spectra of pyrene probe. The critical micelle concentration (CMC) ranged from 0.0019 to 0.016 mg/mL and increased with increasing PMMA block length, while the PEO block length had less effect on the CMC. The partition constant Kv for pyrene in the micelle and in aqueous solution was about 105. The triblock copolymer appeared to form the micelles with hydrophobic PMMA core and hydrophilic PEO loop chain corona. The hydrodynamic radius Rh,app of the micelle measured with dynamic light scattering (DLS) ranged from 17.3 to 24.0 nm and increased with increasing PEO block length to form thicker corona. The spherical shape of the micelle of the triblock copolymers was observed with an atomic force microscope (AFM). Increasing hydrophobic PMMA block length effectively promoted the micelle formation in aqueous solutions, but the micelles were stable even only with short PMMA blocks.  相似文献   

6.
A novel biodegradable and thermosensitive hydrogel microparticle was prepared via suspension polymerization of a kind of block copolymer macromonomers. According to the molecular design, the macromonomer is composed of a thermosensitive triblock copolymer poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) and two oligomers of biodegradable polyester such as oligo(lactic acid) or oligo(ε-caprolactone), and end-capped with acryloyl groups. Microgels were obtained by inverse suspension polymerization of the macromonomer aqueous droplets initiated by a redox initiator. Thermosensitivity and in vitro biodegradation of the resultant microgels were confirmed. The gel microparticles in an aqueous solution were swollen at low temperature and shrunken at high temperature (human body temperature). Degradation rate could be adjusted by controlling the composition and the degree of polymerization of oligoester. Thus, the microgels exhibit combinatory and tunable properties.  相似文献   

7.
A series of symmetrical, thermo-responsive triblock copolymers was prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization, and studied in aqueous solution with respect to their ability to form hydrogels. Triblock copolymers were composed of two identical, permanently hydrophobic outer blocks, made of low molar mass polystyrene, and of a hydrophilic inner block of variable length, consisting of poly(methoxy diethylene glycol acrylate) PMDEGA. The polymers exhibited a LCST-type phase transition in the range of 20-40 °C, which markedly depended on molar mass and concentration. Accordingly, the triblock copolymers behaved as amphiphiles at low temperatures, but became water-insoluble at high temperatures. The temperature dependent self-assembly of the amphiphilic block copolymers in aqueous solution was studied by turbidimetry and rheology at concentrations up to 30 wt %, to elucidate the impact of the inner thermoresponsive block on the gel properties. Additionally, small-angle X-ray scattering (SAXS) was performed to access the structural changes in the gel with temperature. For all polymers a gel phase was obtained at low temperatures, which underwent a gel-sol transition at intermediate temperatures, well below the cloud point where phase separation occurred. With increasing length of the PMDEGA inner block, the gel-sol transition shifts to markedly lower concentrations, as well as to higher transition temperatures. For the longest PMDEGA block studied (DP(n) about 450), gels had already formed at 3.5 wt % at low temperatures. The gel-sol transition of the hydrogels and the LCST-type phase transition of the hydrophilic inner block were found to be independent of each other.  相似文献   

8.
We report the detailed characterization of micelles formed by two nonionic, amphiphilic ABC triblock copolymers. Poly(ethylene oxide)-b-poly(styrene)-b-1,2-poly(butadiene) (PEO-b-PS-b-PB) triblock copolymer "OSB" forms core-corona spherical micelles in aqueous solution, and the two hydrophobic blocks S and B are mixed homogeneously within the micelle core. PEO-b-PS-b-PB:C6F13I triblock copolymer "OSF" was prepared by selective fluorination of the B block in OSB with n-perfluorohexyl iodide. Fluorination of the B block induces internal segregation into an inner F core and an intermediate S shell. Furthermore, the strong incompatibility that results from fluorination drives a shape change into an oblate ellipsoid. These micellar morphologies are confirmed by combined light, neutron, and X-ray scattering measurements, as well as TEM imaging.  相似文献   

9.
Acyl transfer from p-nitrophenyl trimethylacetate to hydrogen peroxide in millimolar aqueous solutions of an amphiphilic poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer slows down as the temperature is raised due to partitioning of the hydrophobic ester into heat-induced micelles.  相似文献   

10.
The effects of temperature, polymer composition, and concentration on the micellization and gelation properties of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers in aqueous solutions were investigated by 1H NMR spectroscopy. It was found that the temperature-dependent behavior of PPO blocks, observed as changes in chemical shift, half-height width, and integral value, could be attributed as an intrinsic tool to characterize the transition states during unimer to micelle formation. The 1H NMR spectral analysis revealed that the hydrophobic part, PPO, of the Pluronic polymers plays a more significant role in the temperature-induced micellization, whereas the transitional behavior of Pluronic polymer, i.e., from micellization to liquid crystals formation, resulted in the drastic broadening of the spectral signals for the PEO, indicating that the PEO segments play a more significant role in the crystallization process. It was also observed that the temperature-dependent changes in the half-height width of the PEO -CH2- signal are sensitive to the liquid crystalline phase formation, which could be attributed to the close packing of spherical micelles at high polymer concentrations or temperatures.  相似文献   

11.
Probing paeonol-pluronic polymer interactions by 1H NMR spectroscopy   总被引:1,自引:0,他引:1  
By using a combination of 1H NMR spectroscopy, two-dimensional heteronuclear single-quantum coherence-resolved (1)H{(13)C} and homonuclear rotating-frame Overhauser enhancement NMR correlation experiments with diffusion ordered spectroscopy (DOSY), the location and distribution of a hydrophobic drug, paeonol, have been established with respect to the methyl groups of the poly(ethylene oxide)-poly(propylene oxide) -poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymer. The interaction between them is adjustable according to the different temperature-dependent hydrophilicities or hydrophobicities of the triblock copolymer components. On the other hand, such interactions influence the self-assembly properties of the block copolymer amphiphiles in solution. The amount of anhydrous methyl groups of PPO segments shows an increase with increasing paeonol concentration. It was also demonstrated that the shell-crosslinking of the Pluronic polymer has an effect in increasing the amount of anhydrous methyl groups and thus increasing the hydrophobicity of Pluronic micelles. This might be the deeper reason underlying the increase in drug-loading capacity and prolongation in release time of Pluronic micelles for drug delivery after the shell-crosslinking. Changes in self-diffusion coefficients of paeonol with varying copolymer concentrations and types were also determined by the diffusion-based NMR DOSY technique, and values of K(a), DeltaG, and n were calculated.  相似文献   

12.
Rotational dynamics of two structurally similar hydrophobic solutes, 2,5-dimethyl-1,4-dioxo-3,6-diphenylpyrrolo[3,4-c]pyrrole (DMDPP) and 1,4-dioxo-3,6-diphenylpyrrolo[3,4-c]pyrrole (DPP), has been investigated in 30% wv aqueous solution of triblock copolymer, poly(ethylene oxide)(20)-poly(propylene oxide)(70)-poly(ethylene oxide)(20) as a function of temperature. This study has been undertaken in an attempt to explore how the dynamics of a solute molecule solubilized in a copolymer solution is influenced when it undergoes sol-to-gel transition. It has been observed that the anisotropy decays of both DMDPP and DPP can be described by biexponential functions in the sol as well as in the gel phase. This observation has been rationalized on the basis of the probe molecule undergoing two different kinds of motion rather than being located in two different regions of the micelle. Even in the gel phase, which results as a consequence of micelle-micelle entanglement due to an increase in their volume fraction, the rotational relaxation of the solutes is similar to that observed in the micellar solution. The outcome of this work indicates that even though these gels have very high macroscopic viscosities and hence do not flow, the microenvironments experienced by the solutes are akin to that of a micellar solution.  相似文献   

13.
Two new poly(ethylene oxide)-poly(styrene oxide) triblock copolymers (PEO-PSO-PEO) with optimized block lengths selected on the basis of previous studies were synthesized with the aim of achieving a maximal solubilization ability and a suitable sustained release, while keeping very low material expense and excellent aqueous copolymer solubility. The self-assembling and gelling properties of these copolymers were characterized by means of light scattering, fluorescence spectroscopy, transmission electron microscopy, and rheometry. Both copolymers formed spherical micelles (12-14 nm) at very low concentrations. At larger concentration (>25 wt%), copolymer solutions showed a rich phase behavior, with the appearance of two types of rheologically active (more viscous) fluids and of physical gels depending on solution temperature and concentration. The copolymer behaved notably different despite their relatively similar block lengths. The ability of the polymeric micellar solutions to solubilize the antifungal drug griseofulvin was evaluated and compared to that reported for other structurally-related block copolymers. Drug solubilization values up to 55 mg g−1 were achieved, which are greater than those obtained by previously analyzed poly(ethylene oxide)-poly(styrene oxide), poly(ethylene oxide)-poly(butylene oxide), and poly(ethylene oxide)-poly(propylene oxide) block copolymers. The results indicate that the selected SO/EO ratio and copolymer block lengths were optimal for simultaneously achieving low critical micelle concentrations (cmc) values and large drug encapsulation ability. The amount of drug released from the polymeric micelles was larger at pH 7.4 than at acidic conditions, although still sustained over 1 day.  相似文献   

14.
The phase transition between unimer and micellar phases of poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (PEO–PPO–PEO) triblock copolymer Pluronic P105 in aqueous solution has been investigated as a function of temperature using Fourier transform infrared spectroscopy. The transition of 8 wt% Pluronic P105 in aqueous solution was found to occur at 25 °C. As temperature increases, PO blocks appear to be stretched conformers with strong interchain interaction, and the formation of a hydrophobic core in the micellar phase. The EO chains are found to change to a more disordered structure with low-chain packing density from the unimer phase to the micellar phase. Both the EO and PO blocks exhibit dehydration during the phase transition. Received: 17 September 1998 Accepted in revised form: 10 December 1998  相似文献   

15.
Amphiphilic triblock copolymers of poly(3-hydroxybutyrate)-poly(ethylene glycol)-poly(3-hydroxybutyrate) (PHB-PEG-PHB) were directly synthesized by the ring-opening copolymerization of β-butyrolactone monomer using PEG as macroinitiator. Their structure, thermal properties and crystallization were investigated by 1H NMR, differential scanning calorimetry (DSC) and X-ray diffraction. It was found that both PHB and PEG blocks were miscible. With the increase in the PHB block length, the triblock copolymers became amorphous because amorphous PHB block remarkably depressed the crystallization of the PEG block. Biodegradable nanoparticles with core-shell structure were prepared in aqueous solution from the amphiphilic triblock copolymers, and characterized by 1H NMR, SEM and fluorescence. The hydrophobic PHB segments formed the central solid-like core, and stabilized by the hydrophilic PEG block. The nanoparticle size was close related to the initial concentrations of the nanoparticle dispersions and the compositions of the triblock copolymers. Moreover, the PHB-PEG-PHB nanoparticles also showed good drug loading properties, which suggested that they were very suitable as delivery vehicles for hydrophobic drugs.  相似文献   

16.
In this paper, we report on the effect of amphiphilic poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymer (TBCP) on the miscibility, phase separation, thermomechanical properties and surface hydrophobicity of diglycidyl ether of bisphenol-A (DGEBA)/4,4'-diaminodiphenylmethane (DDM) system. The blends were nanostructured. The phase separation occurred via self-assembly of PPO blocks followed by the reaction induced phase separation of PEO blocks. The surface roughness increased with increase in concentration of TBCP due to increased phase separation of PEO blocks at higher concentration. The phase separated PEO blocks formed the crystalline phase in the amorphous crosslinked epoxy matrix. The TBCP has a strong plasticizing effect on the matrix and decreased the glass transition temperature (Tg) and modulus of the thermoset. The incorporation of TBCP improved impact strength and tensile properties and 5 phr TBCP content was found to be optimum to achieve balanced mechanical performance. Moreover, the thermal stability of the epoxy system was retained while hydrophobicity was improved in the presence of TBCP.  相似文献   

17.
Dilatational viscoelasticity of adsorbed and spread films of the poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer at the air-water interface is studied by the capillary waves and oscillating barrier techniques. At the surface pressure below 10 mN/m, dynamic surface properties of these films coincide with those of poly(ethylene oxide). At higher surface pressures, the results obtained indicate the desorption of poly(propylene oxide) segments from the monolayer and their interaction with poly(ethylene oxide) segments in an aqueous phase. At a surface pressure close to 19 mN/m, the behavior of adsorbed and spread poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) films becomes different. The real part of dynamic surface elasticity of spread films tends toward its maximum value (20 mN/m) and, upon further compression, films begin to dissolve. At the same time, the surface elasticity of adsorbed films decreases nearly twofold upon the achievement of the maximum value that testifies the formation of looser structure of the surface layer.  相似文献   

18.
This paper reports the studies on micelle formation of new biodegradable amphiphilic poly(ethylene oxide)-poly[(R)-3-hydroxybutyrate]-poly(ethylene oxide) (PEO-PHB-PEO) triblock copolymer with various PHB and PEO block lengths in aqueous solution. Transmission electron microscopy showed that the micelles took an approximately spherical shape with the surrounding diffuse outer shell formed by hydrophilic PEO blocks. The size distribution of the micelles formed by one triblock copolymer was demonstrated by dynamic light scattering technique. The critical micellization phenomena of the copolymers were extensively studied using the pyrene fluorescence dye absorption technique, and the (0,0) band changes of pyrene excitation spectra were used as a probe for the studies. For the copolymers studied in this report, the critical micelle concentrations ranged from 1.3 x 10(-5) to 1.1 x 10(-3) g/mL. For the same PEO block length of 5000, the critical micelle concentrations decreased with an increase in PHB block length, and the change was more significant in the short PHB range. It was found that the micelle formation of the biodegradable amphiphilic triblock copolymers consisting of poly(beta-hydroxyalkanoic acid) and PEO was relatively temperature-insensitive, which is quite different from their counterparts consisting of poly(alpha-hydroxyalkanoic acid) and PEO.  相似文献   

19.
Biphasic polymer latexes were synthesized by a seeded swelling and polymerization method. The latexes were composed of a poly(butyl methacrylate) core and a poly(ethylene oxide) rich shell cross-linked with poly(ethylene oxide)-poly (propylene oxide)-poly(ethylene oxide) triblock diol diacrylate macro-cross-linker. Nanostructured films were obtained by annealing the biphasic polymer latexes at a temperature between the glass-transition temperatures of the core latex and the cross-linked poly(ethylene oxide) based shell. Atomic force microscope images of the latex film revealed that the poly(butyl methacrylate) core phase is confined in the poly(ethylene oxide)-rich continuous phase with the form of separate nanosized spheres.  相似文献   

20.
Nontoxic and biodegradable poly(?‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(?‐caprolactone) triblock copolymers were synthesized by the solution polymerization of ?‐caprolactone in the presence of poly(ethylene glycol). The chemical structure of the resulting triblock copolymer was characterized with 1H NMR and gel permeation chromatography. In aqueous solutions of the triblock copolymers, the micellization and sol–gel‐transition behaviors were investigated. The experimental results showed that the unimer‐to‐micelle transition did occur. In a sol–gel‐transition phase diagram obtained by the vial‐tilting method, the boundary curve shifted to the left, and the gel regions expanded with the increasing molecular weight of the poly(?‐caprolactone) block. In addition, the hydrodynamic diameters of the micelles were almost independent of the investigated temperature (25–55 °C). The atomic force microscopy results showed that spherical micelles formed at the copolymer concentration of 2.5 × 10?4 g/mL, whereas necklace‐like and worm‐like shapes were adopted when the concentration was 0.25 g/mL, which was high enough to form a gel. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 605–613, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号