首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
合成了二正丁基锡新型配合物(n-Bu)2Sn(FcCOS)2[Fe=(η-C5H5)Fe(1-5-η-C5H4)-1;研究了该配合物的红外光谱和核磁共振(1H,13C,119Sn)谱,并推测出配合物可能的分子结构。  相似文献   

2.
以二茂铁硫代甲酸和二正丁基氧化锡反应,合成了未见报道的二正丁基锡新型配合物(n—Bu)2Sn(FeCOS)2[Fe=(η^5-C5H5)Fe(η^5-C5H4)].通过元素分析、红外光谱和核磁共振(^1H,^13C,^119Sn)谱等分析手段对配合物的组成和结构进行了表征.用X射线单晶衍射分析法测定了该配合物的晶体结构.晶体属四方晶系,空间群P421m,晶胞参数α=2.3351(7)nm,6=2.3351(7)nm,c=0.5870(2)nm,V=3.2005(18)nm^3,Z=4,De=1.501Mg/m^3,μ(Mo Kα)=1.823mm^-1,F(000)=1464.最终可靠因子R1=0.0733,wR2=0.1173.配合物中锡原子与2个S原子、2个O原子和2个C原子形成扭曲的八面体几何构型.体外抗癌活性测试结果表明,该配合物对人体的白血病HL-60、结肠癌HCT-8、胃癌BGC-823和鼻咽癌KB等癌细胞均有很好的抑制能力.  相似文献   

3.
配体[C5Me4HR][R=4-Br Ph(1),(Me C5H3N)CH2(2)]分别与Mo(CO)6,Ru3(CO)12和Fe(CO)5在二甲苯中加热回流,得到了6个双核配合物trans-[η5-C5Me4R]2Mo2(CO)6(3,4),trans-[(η5-C5Me4R)Ru(CO)(μ-CO)]2(5,6)和trans-[η5-(C5Me4R)Fe(CO)(μ-CO)]2(7,8)。通过元素分析、红外光谱、核磁共振氢谱对配合物的结构进行了表征,并用X-射线单晶衍射法测定了配合物3,5,6和8的结构。  相似文献   

4.
通过(η^5-C5H5)2Fe2(CO4)和硒粉在沸腾的甲苯中反应可制得含μ3-Se的立方烷合物(η^5-C5H5)4Fe4(μ3-Se)4(1),而由(η^5-C5H5)4Cr4(μ3-Se)4S在甲苯苯中回流可制得含μ3-S的立方烷合物(η^5-C5H5)4Cr4(μ3-Se)4(2,R=COMe,R=CO2Me). 企图通过(η^5-C5H5)4Fe4(μ3-Se)4(5)和硫黄制备U3-S立方烷合物(η^5-C5H5)4Cr4(μ3-Se)4(6)末获成功,基中5是由η^5-EtO2CC5H4Fe(CO)2Na与η^5-EtO2CC5H4F4(CO)2I(4)缩合制得,新化合物1-5经元素分析,IR和^1H光谱表征。  相似文献   

5.
使3-二茂铁-2-丁烯酸钠(FcC(CH3)=CHCOONa,Fc=(η5-C5H4)Fe(η5-C5H5))和1,3-二(1-H-苯并咪唑基)丙烷(L1)与Cd(Ⅱ)在溶液中反应,或使邻羧基苯甲酰二茂铁钠(o-FcCOC6H4COONa)和1,4-二(2-H-苯并咪唑基)丁烷(L2)与Cd(Ⅱ)在溶液中反应,分别得到了一维链状配位聚合物[Cd(η2-FcC(CH3)=CHCOO)(L1)CI]n(1)和单核环状配合物[Cd(η2-o-FcCOC6H4COO)(L2)(H2O)]·NO3·DMF·H2O(2).采用红外、元素分析以及单晶衍射表征了这两个配合物的分子结构;研究了它们的热性能以及在DMF溶液中的电化学性能.  相似文献   

6.
配体C9H7R(R=CH2CH2CH3(1),CH(CH3)2(2),C5H9(3),CH2C6H5(4),CH2CH=CH2(5))分别与Ru3(CO)12在二甲苯或庚烷中加热回流,得到了6个双核配合物[(η5-C9H6R)Ru(CO)(μ-CO)]2(R=CH2CH2CH3(6),CH(CH3)2(7),C5H9(8),CH2C6H5(9),CH2CH=CH2(10))和[(η5-C9H6)(H3CH2C)CHCH(CH2CH3)(η5-C9H6)][Ru(CO)(μ-CO)]2(11)。通过元素分析、红外光谱、核磁共振氢谱对配合物的结构进行了表征,并用X-射线单晶衍射法测定了配合物6,9,10和11的结构。  相似文献   

7.
用(η^5-C5H5)2Mo2(CO)6和Fe3S2(CO)9在甲苯中的反应制备了一种新型混合金属原子簇化合物(η^5-C5H5)4Mo4Fe2-(μ3-S)5(CO)5.并用X-射线结构分析测定了它的晶体结构和分子结构.结果表明原子簇的骨架是由[FeMo3S4]的类立方烷孪合[MoFe2S]的三角锥,它们之间共用一个Fe原子.  相似文献   

8.
陈寿山  姚文庆 《化学学报》1990,48(3):262-265
本文报道了取代环戊二烯基负离子与[(η^5-C5H5)TiCl2]2O反应生成(η^5-C5H5)(η^5-C5H4R).TiCl2的新方法. 研究了取代环戊二烯基负离子的空间位阻和(η^5-C5H5)TiCl3, [(η^5-C5H5)TiCl2]2O的结构以及反应温度对产物产率的影响. 合成了七个新的(η^5-C5H5)(η^5C5H4R)TiCl2类型的化合物及七个相应的二氟化合物。  相似文献   

9.
使3-二茂铁-2-丁烯酸钠(FcC(CH3)=CHCOONa, Fc=(η5-C5H4)Fe(η5-C5H5))和1,3-二(1-H-苯并咪唑基)丙烷(L1)与Cd(II)在溶液中反应, 或使邻羧基苯甲酰二茂铁钠(o-FcCOC6H4COONa)和1,4-二(2-H-苯并咪唑基)丁烷(L2)与Cd(II)在溶液中反应, 分别得到了一维链状配位聚合物[Cd(h2-FcC(CH3)=CHCOO)(L1)Cl]n (1)和单核环状配合物[Cd(h2-o-FcCOC6H4COO)(L2)(H2O)]•NO3•DMF•H2O (2). 采用红外、元素分析以及单晶衍射表征了这两个配合物的分子结构; 研究了它们的热性能以及在DMF溶液中的电化学性能.  相似文献   

10.
由侧链带有噻吩的环戊二烯基配体C5H5C6H10C4H3S与Fe(CO)5在二甲苯中加热回流,合成了1个新颖的四羰基二铁配合物[(η5-C5H4)C6H10(C4H3S)Fe(CO)2]2。通过元素分析、IR、1H NMR对其结构进行了表征,用X-射线单晶衍射确定了其结构。X-射线单晶衍射表明配合物中有2个桥羰基和2个端羰基,Fe-Fe的键长为0.25465(10)nm。  相似文献   

11.
The N-heterocyclic stannylenes (NHSns), [(Dipp) N(CH(2))(n)N(Dipp)S n] (Dipp = 2,6- (i)Pr(2)C(6)H(3); n = 2, 1; n = 3, 5) and [((t)Bu) N(CHMe)(2)N((t)Bu)S n] (10) are competent ligands toward a variety of transition metal centers, as seen in the complexes [W(CO)(5)·1] (2), [(OC)(4)Fe(μ-1)(2)Fe(CO)(4)] (3), [(OC)(4)Fe(μ-1)Fe(CO)(4)] (4), [Fe(CO)(4)·5](n) (6, n = 1 or 2), [(OC)(4)Fe(μ-5)Fe(CO)(4)] (7), [Ph(3)PPt(μ-1)(2)PtPPh(3)] (8), [Fe(CO)(4)·10] (11), and [(η(5)-C(5)H(5))(OC)(2)Mn·10] (12). X-ray crystallographic studies show that the NHSns are structurally largely unperturbed binding to the metal, but in contrast to the parent NHCs, NHSns often adopt a bridging position across dinuclear metal units. The balance between terminal and bridging positions for the stannylene is evidently closely balanced as shown by the observation of both monomers and dimers for 6 in the solid state and in solution. (119)Sn and (57)Fe Mo?ssbauer spectroscopy of the complexes shows the tin atoms in such complexes to be consistent with electron deficient Sn(II) centers.  相似文献   

12.
This report describes routes to iron dithiolato carbonyls that do not require preformed iron carbonyls. The reaction of FeCl 2, Zn, and Q 2S 2C n H 2 n (Q (+) = Na (+), Et 3NH (+)) under an atmosphere of CO affords Fe 2(S 2C n H 2 n )(CO) 6 ( n = 2, 3) in yields >70%. The method was employed to prepare Fe 2(S 2C 2H 4)( (13)CO) 6. Treatment of these carbonylated mixtures with tertiary phosphines, instead of Zn, gave the ferrous species Fe 3(S 2C 3H 6) 3(CO) 4(PR 3) 2, for R = Et, Bu, and Ph. Like the related complex Fe 3(SPh) 6(CO) 6, these compounds consist of a linear arrangement of three conjoined face-shared octahedral centers. Omitting the phosphine but with an excess of dithiolate, we obtained the related mixed-valence triiron species [Fe 3(S 2C n H 2 n ) 4(CO) 4] (-). The highly reducing all-ferrous species [Fe 3(S 2C n H 2 n ) 4(CO) 4] (2-) is implicated as an intermediate in this transformation. Reactive forms of iron, prepared by the method of Rieke, also combined with dithiols under a CO atmosphere to give Fe 2(S 2C n H 2 n )(CO) 6 in modest yields under mild conditions. Studies on the order of addition indicate that ferrous thiolates are formed prior to the onset of carbonylation. Crystallographic characterization demonstrated that the complexes Fe 3(S 2C 3H 6) 3(CO) 4(PEt 3) 2 and PBnPh 3[Fe 3(S 2C 3H 6) 4(CO) 4] feature high-spin ferrous and low-spin ferric as the central metal, respectively.  相似文献   

13.
Metalladichalcogenolate cluster complexes [{CpCo(S2C6H4)}2Mo(CO)2] (Cp = eta(5)-C5H5) (3), [{CpCo(S2C6H4)}2W(CO)2] (4), [CpCo(S2C6H4)Fe(CO)3] (5), [CpCo(S2C6H4)Ru(CO)2(P(t)Bu3)] (6), [{CpCo(Se2C6H4)}2Mo(CO)2] (7), and [{CpCo(Se2C6H4)}(Se2C6H4)W(CO)2] (8) were synthesized by the reaction of [CpCo(E2C6H4)] (E = S, Se) with [M(CO)3(py)3] (M = Mo, W), [Fe(CO)5], or [Ru(CO)3(P(t)Bu3)2], and their crystal structures and physical properties were investigated. In the series of trinuclear group 6 metal-Co complexes, 3, 4, and 7 have similar structures, but the W-Se complex, 8, eliminates one cobalt atom and one cyclopentadienyl group from the sulfur analogue, 4, and does not satisfy the 18-electron rule. 1H NMR observation suggested that the CoW dinuclear complex 8 was generated via a trinuclear Co2W complex, with a structure comparable to 7. The trinuclear cluster complexes, 3, 4, and 7, undergo quasi-reversible two-step one-electron reduction, indicating the formation of mixed-valence complexes Co(III)M(0)Co(II) (M = Mo, W). The thermodynamic stability of the mixed-valence state increases in the order 4 < 3 < 7. In the dinuclear group 8 metal-Co complexes, 5 and 6, the CpCo(S2C6H4) moiety and the metal carbonyl moiety act as a Lewis acid character and a base character, respectively, as determined by their spectrochemical and redox properties. Complex 5 undergoes reversible two-step one-electron reduction, and an electron paramagnetic resonance (EPR) study indicates the stepwise reduction process from Co(III)Fe(0) to form Co(III)Fe(-I) and Co(II)Fe(-I).  相似文献   

14.
Diaminostannylenes react with [Ru(3)(CO)(12)] without cluster fragmentation to give carbonyl substitution products regardless of the steric demand of the diaminostannylene reagent. Thus, the Sn(3)Ru(3) clusters [Ru(3){μ-Sn(NCH(2)(t)Bu)(2)C(6)H(4)}(3)(CO)(9)] (4) and [Ru(3){μ-Sn(HMDS)(2)}(3)(CO)(9)] (6) [HMDS = N(SiMe(3))(2)] have been prepared in good yields by treating [Ru(3)(CO)(12)] with an excess of the cyclic 1,3-bis(neo-pentyl)-2-stannabenzimidazol-2-ylidene and the acyclic and bulkier Sn(HMDS)(2), respectively, in toluene at 110 °C. The use of smaller amounts of Sn(HMDS)(2) (Sn/Ru(3) ratio = 2.5) in toluene at 80 °C afforded the Sn(2)Ru(3) derivative [Ru(3){μ-Sn(HMDS)(2)}(2)(μ-CO)(CO)(9)] (5). Compounds 5 and 6 represent the first structurally characterized diaminostannylene-ruthenium complexes. While a further treatment of 5 with Ge(HMDS)(2) led to a mixture of uncharacterized compounds, a similar treatment with the sterically alleviated diaminogermylene Ge(NCH(2)(t)Bu)(2)C(6)H(4) provided [Ru(3){μ-Sn(HMDS)(2)}(2){μ-Ge(NCH(2)(t)Bu)(2)C(6)H(4)}(CO)(9)] (7), which is a unique example of Sn(2)GeRu(3) cluster. All these reactions, coupled to a previous observation that [Ru(3)(CO)(12)] reacts with excess of Ge(HMDS)(2) to give the mononuclear complex [Ru{Ge(HMDS)(2)}(2)(CO)(3)] but triruthenium products with less bulky diaminogermylenes, indicate that, for reactions of [Ru(3)(CO)(12)] with diaminometalenes, both the volume of the diaminometalene and the size of its donor atom (Ge or Sn) are of key importance in determining the nuclearity of the final products.  相似文献   

15.
The reactions of diorganotin dichloride [Ph_2SnCl_2, (PhCH_2)_2-SnCl_2 or (n-Bu)_2SnCl_2] with potassium salt of 2,5-dimercapto-4-phenyl-1, 3, 4-thiodiazole gave complexes R_2Sn (S_3N_2C_8H_5)_2(4: R=Ph; 5: R=PhCH_2 and 6: R=n-Bu), respectively.Characterizations were carried out for all complexes by IR, ~1HNMR spectra and X-ray crystallography analysis. Including theSn…N interaction, the three complexes all have six-coordinateddistorted octahedral geometry. Based on the requence of stereo-chemical constraint sequence, phenyl≈benzyl>n-butyl, the lessthe effect of the stereochemical constraint of R groups, the  相似文献   

16.
陈家碧  雷桂馨  殷建国 《化学学报》1989,47(11):1105-1108
五羰基铁, Fe(CO)~5(1), 与芳基锂(ArLi)在乙醚中于低温下反应, 所生成的酰羰基锂中间体在水溶液中于0℃用 Et~3OBF~4烷基化, 制得六个标题配合物(co)~4Fec(OC~1H~5)Ar(Ar:C~6H~5, 2;o-CH~3C~6H~4,3;p-CH~3C~6H~4, 4;p-CH~3OC~6H~4,5;C~6Cl~5,6;p-CF~3C~6H~4,7). 当用p-CF~3C~6H~4Li作为亲核试剂与1 反应时, 除生成7外, 还获得副产物对三氟甲基苯丙酮,p-CF~3C~6H~4COC~2H~5(8)。  相似文献   

17.
Pentacarbonyl-7H-indenediiron, [Fe2(CO)5(eta3,eta5-C9H8)] (1), reacts with aryllithium, ArLi (Ar = C6H5, p-C6H5C6H4), followed by alkylation with Et3OBF4 to give novel 7H-indene-coordinated diiron bridging alkoxycarbene complexes [Fe2{mu-C(OC2H5)Ar}(CO)4(eta4,eta4-C9H8)] (2, Ar = C6H5; 3, Ar = p-C6H5C6H4). Complexes 2 and 3 react with HBF4.Et2O at low temperature to yield cationic bridging carbyne complexes [Fe2(mu-CAr)(CO)4(eta4,eta4-C9H8)]BF4 (4, Ar = C6H5; 5, Ar = p-C6H5C6H4). Cationic 4 and 5 react with NaBH4 in THF at low temperature to afford diiron bridging arylcarbene complexes [Fe2{mu-C(H)Ar}(CO)4(eta4,eta4-C9H8)] (6, Ar = C6H5; 7, Ar = p-C6H5C6H4). The similar reactions of 4 and 5 with NaSC6H4CH3-p produce the bridging arylthiocarbene complexes [Fe2{mu-C(Ar)SC6H4CH3-p}(CO)4(eta4,eta4-C9H8)] (8, Ar = C6H5; 9, Ar = p-C6H5C6H4). Cationic 4 and 5 can also react with anionic carbonylmetal compounds Na[M(CO)5(CN)] (M = Cr, Mo, W) to give the diiron bridging aryl(pentacarbonylcyanometal)carbene complexes [Fe2{mu-C(Ar)NCM(CO)5}(CO)4(eta4,eta4-C9H8)] (10, Ar = C6H5, M = Cr; 11, Ar = p-C6H5C6H4, M = Cr; 12, Ar = C6H5, M = Mo; 13, Ar = p-C6H5C6H4, M = Mo; 14, Ar = C6H5, M = W; 15, Ar = p-C6H5C6H4, M = W). Interestingly, in CH2Cl2 solution at room temperature complexes 10-15 were transformed into the isomerized 7H-indene-coordinated monoiron complexes [Fe(CO)2(eta5-C9H8)C(Ar)NCM(CO)5] (16, Ar = C6H5, M = Cr; 17, Ar = p-C6H5C6H4, M = Cr; 18, Ar = C6H5, M = Mo; 19, Ar = p-C6H5C6H4, M = Mo; 20, Ar = C6H5, M = W; 21, Ar = p-C6H5C6H4, M = W), while complex 3 was converted into a novel ring addition product [Fe2{C(OC2H5)C6H4C6H5-p-(eta2,eta5-C9H8)}(CO)5] (22) under the same conditions. The structures of complexes 2, 6, 8, 14, 18 and 22 have been established by X-ray diffraction studies.  相似文献   

18.
This study probes the impact of electronic asymmetry of diiron(I) dithiolato carbonyls. Treatment of Fe2(S2C(n)H(2n))(CO)(6-x)(PMe3)x compounds (n = 2, 3; x = 1, 2, 3) with NOBF4 gave the derivatives [Fe2(S2C(n)H(2n))(CO)(5-x)(PMe3)x(NO)]BF4, which are electronically unsymmetrical because of the presence of a single NO(+) ligand. Whereas the monophosphine derivative is largely undistorted, the bis(PMe3) derivatives are distorted such that the CO ligand on the Fe(CO)(PMe3)(NO)(+) subunit is semibridging. Two isomers of [Fe2(S2C3H6)(CO)3(PMe3)2(NO)]BF4 were characterized spectroscopically and crystallographically. Each isomer features electron-rich Fe(CO)2PMe3 and electrophilic Fe(CO)(PMe3)(NO)(+) subunits. These species are in equilibrium with an unobserved isomer that reversibly binds CO (DeltaH = -35 kJ/mol, DeltaS = -139 J mol(-1) K(-1)) to give the symmetrical adduct [Fe2(S2C3H6)(mu-NO)(CO)4(PMe3)2]BF4. In contrast to Fe2(S2C3H6)(CO)4(PMe3)2, the bis(PMe3) nitrosyl complexes readily undergo CO substitution to give the (PMe3)3 derivatives. The nitrosyl complexes reduce at potentials that are approximately 1 V milder than their carbonyl counterparts. Results of density functional theory calculations, specifically natural bond orbital analysis, reinforce the electronic resemblance of the nitrosyl complexes to the corresponding mixed-valence diiron complexes. Unlike other diiron dithiolato carbonyls, these species undergo reversible reductions at mild potentials. The results show that the novel structural and chemical features associated with mixed-valence diiron dithiolates (the so-called H(ox) models) can be replicated in the absence of mixed-valency by the introduction of electronic asymmetry.  相似文献   

19.
[{Micro-(phthalazine-N2:N3)}Fe2(micro-CO)(CO)6](1) reacts with organolithium reagents, RLi (R = CH3, C6H5, p-CH3C6H4, p-CH3OC6H4, p-CF3C6H4, p-C6H5C6H4), followed by treatment with Me3SiCl to give the novel diiron carbonyl complexes with a saturated N-N six-membered diazane ring ligand, [{C6H4CH(R)NNCH2}Fe2(C=O)(CO)6](2, R = CH3; 3, R = C6H5; 4, R =p-CH3C6H4; 5, R =p-CH3OC6H4; 6, R =p-CF3C6H4; 7, R =p-C6H5C6H4). Compounds 4 and 5 were treated with [(NH4)2Ce(NO3)6] to afford the aryl-substituted phthalazine-coordinated diiron carbonyl compounds [(micro-{1-(p-CH3C6H4)-phthalazine-N2:N3})Fe2(micro-CO)(CO)6](8) and [(micro-{1-(p-CH3OC6H4)-phthalazine-N2:N3})Fe2(micro-CO)(CO)6](9), respectively. The structures of complexes 4 and 9 have been established by X-ray diffraction studies.  相似文献   

20.
[{mu-(Pyridazine-N(1):N(2))}Fe(2)(mu-CO)(CO)(6)](1) reacts with aryllithium reagents, ArLi (Ar = C(6)H(5), m-CH(3)C(6)H(4)) followed by treatment with Me(3)SiCl to give the novel pyridazine-coordinated diiron bridging siloxycarbene complexes [(C(4)H(4)N(2))Fe(2){mu-C(OSiMe(3))Ar}(CO)(6)](2, Ar = C(6)H(5); 3, Ar =m-CH(3)C(6)H(4)). Complex 2 reacts with HBF(4).Et(2)O at low temperature to yield a cationic bridging carbyne complex [(C(4)H(4)N(2))Fe(2)(mu-CC(6)H(5))(CO)(6)]BF(4)(4). Cationic 4 reacts with NaBH(4) in THF at low temperature to afford the diiron bridging arylcarbene complex [(C(4)H(4)N(2))Fe(2){mu-C(H)C(6)H(5)}(CO)(6)](5). Unexpectedly, the reaction of 4 with NaSCH(3) under similar conditions gave the bridging arylcarbene complex 5 and a carbonyl-coordinated diiron bridging carbene complex [Fe(2){mu-C(SCH(3))C(6)H(5)}(CO)(7)](6), while the reaction of NaSC(6)H(4)CH(3)-p with 4 affords the expected bridging arylthiocarbene complex [(C(4)H(4)N(2))Fe(2){mu-C(SC(6)H(4)CH(3)-p)C(6)H(5)}(CO)(6)](7), which can be converted into a novel diiron bridging carbyne complex with a thiolato-bridged ligand, [Fe(2)(mu-CC(6)H(5))(mu-SC(6)H(4)CH(3)-p)(CO)(6)](8). Cationic can also react with the carbonylmetal anionic compound Na(2)[Fe(CO)(4)] to yield complex 5, while the reactions of 4 with carbonylmetal anionic compounds Na[M(CO)(5)(CN)](M = Cr, Mo, W) produce the diiron bridging aryl(pentacarbonylcyanometal)carbene complexes [(C(4)H(4)N(2))Fe(2)-{mu-C(C(6)H(5))NCM(CO)(5)}(CO)(6)](9, M = Cr; 10, M = Mo; 11, M = W). The structures of complexes 2, 5, 6, 8, and 9 have been established by X-ray diffraction studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号