首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Formation mechanisms of metal particles (gold (Au) particles) in an aqueous ethanol solution of HAuCl4 with poly(N-vinyl-2-pyrrolidone) (PVP) by the photoreduction method were investigated by UV-vis, transmission electron microscopy (TEM), and in situ and ex situ X-ray absorption fine structure (XAFS) analysis. The average diameters of the dilute and concentrated Au particles in PVP solution are estimated from TEM to be 106 A and 925 A, respectively. XAFS analysis was carried out to elucidate the reduction process of AuCl4- ionic species to metallic Au particles for the Au-L3 edge of the colloidal dispersions of the concentrated Au solutions. In the photoreduction process, the reduction of AuCl2- species to Au0 atoms is a slower process than that of AuCl4- to AuCl2-, and the reduction of AuCl2- to Au0 atoms and the association of Au0 atoms to form seed Au particles (particle diameter between 5.5 and 30 A) concurrently proceeds in the short-duration photoirradiation. In addition, in the long-duration photoirradiation, the slow progression of Au particle growth occurs with the association of Au0-Au0 metallic bonds, resulting in the formation of larger Au particles (particle diameter larger than 500 A).  相似文献   

2.
The temporal evolution of Pt nanoparticle formation in ethylene glycol solution from H(2)PtCl(6)·6H(2)O at 90 °C for different molar ratios of NaOH to Pt (84, 6.5, and 2) in the presence or absence of poly(N-vinyl-2-pyrrolidone) (PVP) as protecting agent was followed in situ by small-angle X-ray scattering (SAXS). The SAXS profiles were analyzed regarding particle size and size distribution using the Guinier approximation and the indirect Fourier transform technique (IFT). The NaOH to Pt ratio has an influence on the integral nanoparticle formation rate as well as on the metal reduction rate and the ratio of nucleation to growth reactions. The fastest nanoparticle formation rate was observed for the NaOH/Pt ratio of 6.5. The obtained results indicate that the differences in the particle formation rate might be due to differences in the reduction rate of the formed Pt complexes. In alkaline reaction media (NaOH/Pt = 84 or 6.5), small nanoparticles with a relatively narrow size distribution were formed. Therefore, it is assumed that for these NaOH/Pt ratios the particle formation is dominated by nucleation reactions. Additionally, the in situ studies point out that nanoparticles prepared at the NaOH/Pt ratio of 84 do not grow further after attaining a certain particle size. For a NaOH to Pt ratio of 2, that means in acidic medium, particle formation should be dominated by growing processes and, therefore, larger particles are formed accompanied by a broader particle size distribution. The influence of PVP on the nanoparticle formation rate is relatively low. However, in acidic medium, the presence of PVP is necessary in order to protect the formed nanoparticles from irreversible aggregation reactions.  相似文献   

3.
The early stage in the nucleation and subsequent aggregative particle growth of the colloidal platinum (Pt) dispersions produced by photoreduction in an aqueous ethanol solution of poly(N-vinyl-2-pyrrolidone) (PVP) was quantitatively investigated by means of in situ quick XAFS (QXAFS) measurements. The stages of the reduction-nucleation and the association process (aggregative particle growth and Ostwald ripening) of Pt atoms to produce Pt nanoparticles was successfully discriminated in course of the photoreduction time. The present QXAFS analysis indicated that Pt nuclei (i.e., (Pt(0))(m) nucleates approximately m = 4) were continuously produced in the reduction-nucleation process at the early time, followed by the aggregative particle growth with the autocatalytic reduction of Pt ionic species on the surface of Pt nuclei to produce Pt nanoparticles. Subsequently the particle growth proceeded via Ostwald ripening, resulting in the production of larger Pt nanoparticles at a later time. It was also found that the aggregative particle growth follows a sigmoidal profile well described either by the solid-state kinetic model or by the chemical-mechanism-based kinetic model, specifically the Avrami-Erofe'ev or Finke-Watzky models. The difference in terms of the formation mechanism was observed between the reduction of Pt(IV)Cl(6)(2-) and Pt(II)Cl(4)(2-) as a source material. Also presented is that the addition of the photoactivator such as benzoin, benzophenone, and acetophenone in the system is very effective to enhance the rate for the formation of Pt nanoparticles.  相似文献   

4.
The electrochemistry of the [PtCl(6)](2-)-[PtCl(4)](2-)-Pt redox system on a glassy carbon (GC) electrode in a room-temperature ionic liquid (RTIL) [i.e., N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium tetrafluoroborate (DEMEBF(4))] has been examined. The two-step four-electron reduction of [PtCl(6)](2-) to Pt, i.e., reduction of [PtCl(6)](2-) to [PtCl(4)](2-) and further reduction of [PtCl(4)](2-) to Pt, occurs separately in this RTIL in contrast to the one-step four-electron reduction of [PtCl(6)](2-) to Pt in aqueous media. The cathodic and anodic peaks corresponding to the [PtCl(6)](2-)/[PtCl(4)](2-) redox couple were observed at ca. -1.1 and 0.6 V vs a Pt wire quasi-reference electrode, respectively, while those observed at -2.8 and -0.5 V were found to correspond to the [PtCl(4)](2-)/Pt redox couple. The disproportionation reaction of the two-electron reduction product of [PtCl(6)](2-) (i.e., [PtCl(4)](2-)) to [PtCl(6)](2-) and Pt metal was also found to occur significantly. The electrodeposition of Pt nanoparticles could be carried out on a GC electrode in DEMEBF(4) containing [PtCl(6)](2-) by holding the potential at -3.5 or -2.0 V. At -3.5 V, the four-electron reduction of [PtCl(6)](2-) to Pt can take place, while at -2.0 V the two-electron reduction of [PtCl(6)](2-) to [PtCl(4)](2-) occurs. The results obtained demonstrate that the electrodeposition of Pt at -3.5 V may occur via a series of reductions of [PtCl(6)](2-) to [PtCl(4)](2-) and further [PtCl(4)](2-) to Pt and at -2.0 V via a disproportionation reaction of [PtCl(4)](2-) to [PtCl(6)](2-) and Pt. Furthermore, the deposition potential of Pt nanoparticles was found to largely influence their size and morphology as well as the relative ratio of Pt(110) and Pt(100) crystalline orientation domains. The sizes of the Pt nanoparticles prepared by holding the electrode potential at -2.0 and -3.5 V are almost the same, in the range of ca. 1-2 nm. These small nanoparticles are "grown" to form bigger particles with different morphologies: In the case of the deposition at -2.0 V, the GC electrode surface is totally, relatively compactly covered with Pt particles of relatively uniform size of ca. 10-50 nm. On the other hand, in the case of the electrodeposition at -3.5 V, small particles of ca. 50-100 nm and the grown-up particles of ca. 100-200 nm cover the GC surface irregularly and coarsely. Interestingly, the Pt nanoparticles prepared by holding the potential at -2.0 and -3.5 V are relatively enriched in Pt(100) and Pt(110) facets, respectively.  相似文献   

5.
Kramer J  Koch KR 《Inorganic chemistry》2006,45(19):7843-7855
A detailed 195Pt NMR study of the distribution of Pt(IV) complex species resulting from the aquation of H2PtCl6, H2PtBr6, and mixtures of H2PtCl6/H2PtBr6 in water/dilute HClO4 has been carried out to obtain an understanding of the speciation in these solutions as relevant to the recovery of Pt(IV) complexes from process solutions. A species distribution plot of the [PtCl6]2-, [PtCl5(H2O)]-, and [PtCl4(H2O)2] shows that in equilibrated, relatively concentrated H2PtCl6 solutions ([Pt]t > 0.12 M), the [PtCl4(H2O)2] species is below the 195Pt NMR detection limit; for [Pt]t concentrations < 0.1 M, the relative concentrations of the [PtCl5(H2O)]- and [PtCl4(H2O)2] species increase significantly, as a result of relatively rapid aquation of the [PtCl6]2- and [PtCl5(H2O)]- complexes under these conditions. From this (195)Pt NMR data the aquation constants of [PtCl6]2- and [PtBr6]2- of log K6 approximately 1.75 +/- 0.05 and log K6 approximately 2.71 +/- 0.15, respectively, have been determined at 30 degrees C. In mixtures of H2PtCl6/H2PtBr6 in water, a number of previously unidentified aquated complexes of the general formula [PtCl(5-n)Br(n)(H2O)]- (n = 0-5) could be identified, including the possible geometrical isomers of these complexes. These 195Pt NMR assignments were confirmed by remarkably systematic, linear relationships between the 195Pt chemical shift increments induced by substitution of Cl- ions by n Br- ions in [PtCl(6-n)Br(n)]2- and [PtCl(5-n)Br(n)(H2O)]- complexes. Preferential extraction of the [PtX6]2- (X = Cl, Br, or a mixture of the two halides) species over their corresponding aquated [PtX5(H2O)]- counterparts by silica-based diethylenetriamine anion exchangers could be demonstrated by means of 195Pt NMR spectroscopy.  相似文献   

6.
The nucleation reaction dynamics of platinum nanoparticles in the photoreduction process of H(2)Pt(IV)Cl(6) solution were investigated by the heterodyne transient grating (HD-TG) method. The formation mechanism of platinum nanoparticles was considered, supported by information obtained from UV/VIS absorption spectroscopy during the reaction and SEM images of the generated nanoparticles. In particular, the roles of poly(N-vinyl-2-pyrrolidone) (PVP) as a protective polymer and ethanol as a solvent were studied. The chemical species involved in the reaction can be identified from the diffusion coefficients obtained from HD-TG measurements; the species observed by UV pulse irradiation were assigned to H(2)Pt(IV)Cl(6) as a reactant species and H(2)Pt(II)Cl(4) and Pt nuclei as product species. It was observed that the amounts of the reactant and product species increased, and many homogeneous nanoparticles were generated, by an increase in PVP concentration. The addition of ethanol to the solvent showed a larger effect on the enhancement of the reduction of H(2)Pt(IV)Cl(6) than that of PVP; however, it did not lead to Pt nuclei formation in the order of seconds. Nevertheless, because nanoparticle formation was confirmed by UV/VIS absorption spectroscopy and SEM images, the formation of nanoparticles following nuclei formation must have proceeded via a slow reaction. Therefore, nucleation and nanoparticle formation are considered to occur on a longer time scale than 10 s in water/ethanol solvent.  相似文献   

7.
The photoreduction process of PtCl(6)2- to Pt nanoparticles in poly(N-vinyl-2-pyrrolidone) solutions upon UV light irradiation was investigated by monitoring the change in the diffusion coefficient (D). The D values of chemical species during UV irradiation was measured by the laser-induced transient grating (TG) method. The TG signal of the PtCl(6)2- solution before UV irradiation was composed of three kinds of contributions, the thermal grating, the species grating due to the creation of PtCl4(2-), and the species grating due to the depletions of PtCl6(2-). Upon UV irradiation of the solution, the species grating signal due to PtCl6(2-) diminished and then the TG signal of Pt nanoparticles gradually appeared. This result indicates that the gradual clustering of Pt0 atoms into Pt nanoparticles occurs after all PtCl(6)2- ions are photochemically reduced to PtCl(4)2- and subsequently transformed to Pt0 atoms with a short delay. With increasing time of the UV irradiation, the TG signal intensity increased, while D of the Pt nanoparticles did not change. This suggests that the number of Pt nanoparticles increases, but the size of the Pt nanoparticles with the polymer layer is unchanged, in the course of the UV irradiation.  相似文献   

8.
 通过调变的多元醇法制备了40%Pt/C直接甲醇燃料电池阴极电催化剂,应用透射电镜(TEM)及X射线衍射(XRD)方法表征催化剂.结果表明,由该制备方法可得到高分散,金属粒子粒径分布窄的高载量贵金属催化剂.TEM统计结果表明,调变多元醇法制备的40%Pt/C催化剂的金属粒子平均粒径约为2.9nm.直接甲醇燃料电池单池性能测试表明,该方法制得的40%Pt/C的电催化氧还原能力比同型商品催化剂更好.另外,利用UV-Vis光谱研究了催化剂的制备过程.结果表明,在调变的多元醇法中,Pt4+的还原是一步完成的.  相似文献   

9.
金属Pt是良好的催化加氢、脱氢催化剂, 利用单壁碳纳米管(SWNTs)自身的还原性, 将K2PtCl6溶液中的Pt直接还原并负载在SWNTs表面上, 制备了具有良好催化性能的SWNTs/Pt负载型催化剂. 通过TEM, XPS和TG对材料进行了表征, 研究了K2PtCl6浓度及溶剂对Pt负载量、粒径的影响, 并测试了SWNTs/Pt的催化性能. 实验结果表明, SWNTs负载的Pt颗粒小, 分散均匀, 负载量高, 与SWNTs结合紧密, 催化性能好, 是催化加氢和脱氢反应的良好催化剂.  相似文献   

10.
保护剂对K2PtCl6为前体合成纳米铂形状的影响   总被引:3,自引:0,他引:3  
纳米粒子的性质不仅受到尺寸的影响,还与其形状密切相关,由于铂在催化及材料等领域中有重要应用,因此化学合成特定形状的纳米铂一直备受关注,具有特定表面结构的纳米粒子对于研究催化活性与表面原子结构的关系具有重要意义,目前立方体形状纳米铂已被合成,但高比例四面体形状纳米铂的合成研究很少有报道,  相似文献   

11.
Formation mechanisms of silver (Ag) particles in an aqueous ethanol solution of poly(N-vinyl-2-pyrrolidone) (PVP) by the photoreduction of AgClO(4) were investigated by means of in situ small-angle X-ray scattering (SAXS) measurements. The kinetics of association process (nucleation, growth, and coalescence) of Ag(0) atoms to produce Ag particles was successfully revealed by the quantitative SAXS analysis for the number-average of radius (R(0)), number of particles (n(Ag)), reduced standard deviation (σ(R)/R(0)), and volume fraction (?(Ag)) of Ag particles produced by the photoreduction. The rate of nucleation and growth process during Ag particle formation strongly depend on the initial metal concentration. The time evolution of radius and number of Ag particles indicates that a mechanism of Ag particle formation is composed of different three processes, that is, reduction-nucleation, Ostwald ripening, and particle coalescence. In a rapid reduction-nucleation process, small nuclei or particles (average radius ~2.5 nm) are produced by an autocatalytic reduction. After the formation of small nuclei or particles proceeds, Ostwald ripening and particle coalescence, predicted by the Lifshitz-Slyozov-Wagner theory (LSW theory), subsequently occur, resulting in the particle growth (average radius ~11.5 nm).  相似文献   

12.
A number of pivalamidate bridged dinuclear [PtII2(RNH2)4(NHCOtBu)2]2+, [PtIII2LL (RNH2)4(NHCOtBu)2]n+ (2RNH2 = 2NH3, 1,2-ethylenediamine, 1,2-diaminocyclohexane; L, L' = NO3-, H2O, or ketonate), trinuclear [{PtII(dap)(NHCOtBu)2}2PdIII]3+ (dap = 1,2-diaminopropane), tetranuclear [{PtII2(NH3)2(DACH)(NHCOtBu)2}2]4+ (DACH = 1,2-diaminocyclohexane), pentanuclear [{Pt2(C5H7O)(NH3)2Cl2(NHCOtBu)2}2PtCl4], and hexanuclear [Pt2(NH3)2(en)(NHCOtBu)2Pt(NO2)4]2 platinum complexes containing Pt(II)-Pt(II), Pt(II)-Pt(III), Pt(II)-Pd(III), and Pt(III)-Pt(III) interactions have been prepared and structurally characterized. The Pt-Pt interactions are characteristic of covalent, dative, or orbital symmetric Pt-Pt bonds. The dimeric Pt(III) complexes are able to activate C-H bonds of ketones to afford ketonate platinum(III) complexes. The Pt-Pt bonds are either doubly amidate-bridged or ligand unsupported. Their distances are 2.99-3.22 A for Pt(II)-Pt(II), 2.59-2.72 A for Pt(III)-Pt(III), 2.98 A for Pt(II)-Pt(III), and 2.66 A for Pt(II)-Pd(III) bonds depending on the oxidation states of the two metals and the ancillary ligands.  相似文献   

13.
Pt/carbon nanofiber (Pt/CNF) nanocomposites were facilely synthesized by the reduction of hexachloroplatinic acid (H(2)PtCl(6)) using formic acid (HCOOH) in aqueous solution containing electrospun carbon nanofibers at room temperature. The obtained Pt/CNF nanocomposites were characterized by TEM and EDX. The Pt nanoparticles could in situ grow on the surface of CNFs with small particle size, high loading density, and uniform dispersion by adjusting the concentration of H(2)PtCl(6) precursor. The electrocatalytic activities of the Pt/CNF nanocomposites were also studied. These Pt/CNF nanocomposites exhibited higher electrocatalytic activity toward methanol oxidation reaction compared with commercial E-TEK Pt/C catalyst. The results presented may offer a new approach to facilely synthesize direct methanol fuel cells (DMFCs) catalyst with enhanced electrocatalytic activity and low cost.  相似文献   

14.
A Study of Pt4+-Adsorption and Its Reduction by Bacillus Megaterium D01   总被引:2,自引:0,他引:2  
The properties of Pt4+-adsorption and its reduction by Bacillus megaterium D01 were studied by means of ICP,anode-stripping voltammetry,TEM,IR and XPS.The results of ICP analyses showed that the Pt4+-adsorptive efficiency of the strain D01 was as high as 94.3% under the conditions of 100 mg Pt4+/L,1 g biomass/L,pH 3.5 and at 30 ℃ for 24 h.Moreover,it was confirmed from anode stripping voltammetry that the strain D01 possessed a strong reducibility.The TEM analysis indicated that the strain D01 was able to adsorb and reduce Pt4+ to Pt0,small particles.The XPS result further supported the reduction of Pt4+ to Pt2+,followed by the further recuction to Pt0.The IR spectrum implied that D01 biomass adsorption of Pt4+ may result in the complexation of the C=O bond to the Pt species.  相似文献   

15.
螯合辅助溶剂挥发共组装法制备的炭-氧化铝复合材料为载体,分别使用水、乙醇或二者混合物为氯铂酸的分散介质,浸渍制备炭-氧化铝复合材料负载Pt催化剂.通过XRD,N2物理吸附以及TEM表征可知,乙醇作为浸渍溶剂时,最有利于Pt的分散,而混合溶剂浸渍制备的催化剂Pt颗粒最大.2-氧-4-苯基丁酸乙酯不对称加氢反应结果表明,氯铂酸水溶液浸渍得到的催化剂Pt纳米粒子的粒径有利于获得高的光学选择性,催化剂经辛可尼丁修饰后,以乙酸为反应溶剂,可获得最高84.8%的光学选择性.此外,该催化剂重复利用性能优异,可以重复利用22次,活性没有下降.  相似文献   

16.
Nanosized colloidal platinum was prepared by reduction of H2PtCl6 in methanol-water mixture by refluxing. The particle size and morphology were characterized by transmission electron microscopy and electron diffraction. The influence of polyvinylpyrrolidone (PVP) molecular mass (MM),PVP concentration,and reduction time on platinum particle size was investigated. Small (1-2 nm) Pt particles are formed in the case of PVP with MM=1.2×104. With increasing polymer MM and decreasing polymer concentration,large aggregates from small particles appear. High catalytic activity of the obtained colloidal platinum in hydrogenation of acetylene compounds is shown. The effect of Pt particle size on the catalytic activity was studied.  相似文献   

17.
The effects of the addition of manganese to a series of TiO(2)-supported cobalt Fischer-Tropsch (FT) catalysts prepared by different methods were studied by a combination of X-ray diffraction (XRD), temperature-programmed reduction (TPR), transmission electron microscopy (TEM), and in situ X-ray absorption fine structure (XAFS) spectroscopy at the Co and Mn K-edges. After calcination, the catalysts were generally composed of large Co(3)O(4) clusters in the range 15-35 nm and a MnO(2)-type phase, which existed either dispersed on the TiO(2) surface or covering the Co(3)O(4) particles. Manganese was also found to coexist with the Co(3)O(4) in the form of Co(3-x)Mn(x)O(4) solutions, as revealed by XRD and XAFS. Characterization of the catalysts after H(2) reduction at 350 degrees C by XAFS and TEM showed mostly the formation of very small Co(0) particles (around 2-6 nm), indicating that the cobalt phase tends to redisperse during the reduction process from Co(3)O(4) to Co(0). The presence of manganese was found to hamper the cobalt reducibility, with this effect being more severe when Co(3-x)Mn(x)O(4) solutions were initially present in the catalyst precursors. Moreover, the presence of manganese generally led to the formation of larger cobalt agglomerates ( approximately 8-15 nm) upon reduction, probably as a consequence of the decrease in cobalt reducibility. The XAFS results revealed that all reduced catalysts contained manganese entirely in a Mn(2+) state, and two well-distinguished compounds could be identified: (1) a highly dispersed Ti(2)MnO(4)-type phase located at the TiO(2) surface and (2) a less dispersed MnO phase being in the proximity of the cobalt particles. Furthermore, the MnO was also found to exist partially mixed with a CoO phase in the form of rock-salt Mn(1-x)Co(x)O-type solid solutions. The existence of the later solutions was further confirmed by scanning transmission electron microscopy with electron energy loss spectroscopy (STEM-EELS) for a Mn-rich sample. Finally, the cobalt active site composition in the catalysts after reduction at 300 and 350 degrees C was linked to the catalytic performances obtained under reaction conditions of 220 degrees C, 1 bar, and H(2)/CO = 2. The catalysts with larger Co(0) particles ( approximately >5 nm) and lower Co reduction extents displayed a higher intrinsic hydrogenation activity and a longer catalyst lifetime. Interestingly, the MnO and Mn(1-x)Co(x)O species effectively promoted these larger Co(0) particles by increasing the C(5+) selectivity and decreasing the CH(4) production, while they did not significantly influence the selectivity of the catalysts containing very small Co(0) particles.  相似文献   

18.
以乙二醇代替常规的异丙醇为分散溶剂, H2PtCl6为前驱体溶剂, 甲醛为还原剂, 采用改进浸渍还原法制备Pt/C催化剂, 用XRD, TEM和XPS对其进行表征. 改进浸渍还原法容易制备高分散度Pt/C催化剂, 催化剂Pt粒径大小可通过改变溶液pH值控制, pH值从1.6增加至11.3, 铂纳米粒子的平均粒径由3.3 nm减小到1.8 nm. pH值11.3时催化剂中Pt(0), Pt(II)和Pt(IV)的含量分别为43.3%, 30.8%和25.9%. 选择不同Pt粒径大小的Pt/C催化剂与聚四氟乙烯(PTFE)一起负载于泡沫镍(FN), 得到Pt/C/FN疏水催化剂, 考查其对氢水液相交换反应的催化活性, Pt粒径越小, 催化剂活性越高.  相似文献   

19.
In this paper, we presented the preparation procedure of Pt nanoparticles with the well-controlled polyhedral morphology and size by a modified polyol method using AgNO(3) in accordance with the reduction of H(2)PtCl(6) in EG at high temperature around 160°C. The methods of UV-vis spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and high resolution (HR) TEM measurements were used to characterize their surface morphology, size, and crystal structure. We have observed that the polyhedral Pt nanoparticles of sharp edges and corners were produced in the preferential homogenous growth as well as the formation of porous and large Pt particles by self-aggregation and assembly originating from as-prepared polyhedral Pt nanoparticles. It is most impressive to find that the arrangement of Pt nanoparticles was observed in their surface attachments, self-aggregation, random and directed surface self-assembly by the bottom-up approach. Their high electrocatalytic activity for methanol oxidation was predicted. The findings and results showed that the polyhedral Pt nanoparticle-based catalysts exhibited the high electrocatalytic activity for their potential applications in developing the efficient Pt-based catalysts for direct methanol fuel cells.  相似文献   

20.
Pt/gamma-Al2O3 catalysts were prepared using hydroxyl-terminated generation four (G4OH) PAMAM dendrimers as the templating agents and the various steps of the preparation process were monitored by extended X-ray absorption fine structure (EXAFS) spectroscopy. The EXAFS results indicate that, upon hydrolysis, chlorine ligands in the H(2)PtCl(6) and K(2)PtCl(4) precursors were partially replaced by aquo ligands to form [PtCl3(H2O)3]+ and [PtCl2(H2O)2] species, respectively. The results further suggest that, after interaction of such species with the dendrimer molecules, chlorine ligands from the first coordination shell of Pt were replaced by nitrogen atoms from the dendrimer interior, indicating that complexation took place. This process was accompanied by a substantial transfer of electron density from the dendrimer to platinum, indicating that the dendrimer plays the role of a ligand. Following treatment of the H(2)PtCl(6)/G4OH and K(2)PtCl(4)/G4OH complexes with NaBH4, no substantial changes were observed in the electronic or coordination environment of platinum, indicating that metal nanoparticles were not formed during this step under our experimental conditions. However, when the reduction treatment was performed with H2, the formation of extremely small platinum clusters, incorporating no more than four Pt atoms was observed. The nuclearity of these clusters depends on the length of the hydrogen treatment. These Pt species remained strongly bonded to the dendrimer. Formation of larger platinum nanoparticles, with an average diameter of approximately 10 A, was finally observed after the deposition and drying of the H(2)PtCl(6)/G4OH nanocomposites on a gamma-Al(2)O(3) surface, suggesting that the formation of such nanoparticles may be related to the collapse of the dendrimer structure. The platinum nanoparticles formed appear to have high mobility because subsequent thermal treatment in O2/H2, used to remove the dendrimer component, led to further sintering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号