首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Denoising has to do with estimating a signal \(\mathbf {x}_0\) from its noisy observations \(\mathbf {y}=\mathbf {x}_0+\mathbf {z}\). In this paper, we focus on the “structured denoising problem,” where the signal \(\mathbf {x}_0\) possesses a certain structure and \(\mathbf {z}\) has independent normally distributed entries with mean zero and variance \(\sigma ^2\). We employ a structure-inducing convex function \(f(\cdot )\) and solve \(\min _\mathbf {x}\{\frac{1}{2}\Vert \mathbf {y}-\mathbf {x}\Vert _2^2+\sigma {\lambda }f(\mathbf {x})\}\) to estimate \(\mathbf {x}_0\), for some \(\lambda >0\). Common choices for \(f(\cdot )\) include the \(\ell _1\) norm for sparse vectors, the \(\ell _1-\ell _2\) norm for block-sparse signals and the nuclear norm for low-rank matrices. The metric we use to evaluate the performance of an estimate \(\mathbf {x}^*\) is the normalized mean-squared error \(\text {NMSE}(\sigma )=\frac{{\mathbb {E}}\Vert \mathbf {x}^*-\mathbf {x}_0\Vert _2^2}{\sigma ^2}\). We show that NMSE is maximized as \(\sigma \rightarrow 0\) and we find the exact worst-case NMSE, which has a simple geometric interpretation: the mean-squared distance of a standard normal vector to the \({\lambda }\)-scaled subdifferential \({\lambda }\partial f(\mathbf {x}_0)\). When \({\lambda }\) is optimally tuned to minimize the worst-case NMSE, our results can be related to the constrained denoising problem \(\min _{f(\mathbf {x})\le f(\mathbf {x}_0)}\{\Vert \mathbf {y}-\mathbf {x}\Vert _2\}\). The paper also connects these results to the generalized LASSO problem, in which one solves \(\min _{f(\mathbf {x})\le f(\mathbf {x}_0)}\{\Vert \mathbf {y}-{\mathbf {A}}\mathbf {x}\Vert _2\}\) to estimate \(\mathbf {x}_0\) from noisy linear observations \(\mathbf {y}={\mathbf {A}}\mathbf {x}_0+\mathbf {z}\). We show that certain properties of the LASSO problem are closely related to the denoising problem. In particular, we characterize the normalized LASSO cost and show that it exhibits a “phase transition” as a function of number of observations. We also provide an order-optimal bound for the LASSO error in terms of the mean-squared distance. Our results are significant in two ways. First, we find a simple formula for the performance of a general convex estimator. Secondly, we establish a connection between the denoising and linear inverse problems.  相似文献   

2.
The gradient descent method minimizes an unconstrained nonlinear optimization problem with \({\mathcal {O}}(1/\sqrt{K})\), where K is the number of iterations performed by the gradient method. Traditionally, this analysis is obtained for smooth objective functions having Lipschitz continuous gradients. This paper aims to consider a more general class of nonlinear programming problems in which functions have Hölder continuous gradients. More precisely, for any function f in this class, denoted by \({{\mathcal {C}}}^{1,\nu }_L\), there is a \(\nu \in (0,1]\) and \(L>0\) such that for all \(\mathbf{x,y}\in {{\mathbb {R}}}^n\) the relation \(\Vert \nabla f(\mathbf{x})-\nabla f(\mathbf{y})\Vert \le L \Vert \mathbf{x}-\mathbf{y}\Vert ^{\nu }\) holds. We prove that the gradient descent method converges globally to a stationary point and exhibits a convergence rate of \({\mathcal {O}}(1/K^{\frac{\nu }{\nu +1}})\) when the step-size is chosen properly, i.e., less than \([\frac{\nu +1}{L}]^{\frac{1}{\nu }}\Vert \nabla f(\mathbf{x}_k)\Vert ^{\frac{1}{\nu }-1}\). Moreover, the algorithm employs \({\mathcal {O}}(1/\epsilon ^{\frac{1}{\nu }+1})\) number of calls to an oracle to find \({\bar{\mathbf{x}}}\) such that \(\Vert \nabla f({{\bar{\mathbf{x}}}})\Vert <\epsilon \).  相似文献   

3.
Commutative \({\ell}\)-groups G (in which for all \({x, y \in G, xy = yx}\)) were studied long ago. This was then generalized to the study of \({\ell}\)-groups G in which for a given integer n and for all \({x, y \in G, x^{n}y^{n} = y^{n}x^{n}}\). It was then discovered that if for all \({x, y \in G}\), both \({x^{n}y^{n} = y^{n}x^{n}}\) and \({x^{m}y^{m} = y^{m}x^{m}}\) for two different integers m, n, then also \({x^{d}y^{d} = y^{d}x^{d}}\), where d is the greatest common divisor of m, n.  相似文献   

4.
Given a C 2 semi-algebraic mapping \({F} : {\mathbb{R}^N \rightarrow \mathbb{R}^p}\), we consider its restriction to \({W \hookrightarrow \mathbb{R^{N}}}\) an embedded closed semi-algebraic manifold of dimension \({n-1 \geq p \geq 2}\) and introduce sufficient conditions for the existence of a fibration structure (generalized open book structure) induced by the projection \({\frac{F}{\Vert F \Vert}:W{\setminus} F^{-1}(0) \to S^{p-1}}\). Moreover, we show that the well known local and global Milnor fibrations, in the real and complex settings, follow as a byproduct by considering W as spheres of small and big radii, respectively. Furthermore, we consider the composition mapping of F with the canonical projection \({\pi: \mathbb{R}^{p} \to \mathbb{R}^{p-1}}\) and prove that the fibers of \({\frac{F}{\Vert F \Vert}}\) and \({\frac{\pi \circ F}{\Vert \pi \circ F \Vert}}\) are homotopy equivalent. We also show several formulae relating the Euler characteristics of the fiber of the projection \({\frac{F}{\Vert F \Vert}}\) and \({W \cap F^{-1}(0)}\). Similar formulae are proved for mappings obtained after composition of F with canonical projections.  相似文献   

5.
6.
Let A and B be unital Banach algebras and let M be a unital Banach A,B-module. Forrest and Marcoux [6] have studied the weak amenability of triangular Banach algebra \(\mathcal{T} = \left[ {_B^{AM} } \right]\) and showed that T is weakly amenable if and only if the corner algebras A and B are weakly amenable. When \(\mathfrak{A}\) is a Banach algebra and A and B are Banach \(\mathfrak{A}\)-module with compatible actions, and M is a commutative left Banach \(\mathfrak{A}\)-A-module and right Banach \(\mathfrak{A}\)-B-module, we show that A and B are weakly \(\mathfrak{A}\)-module amenable if and only if triangular Banach algebra T is weakly \(\mathfrak{T}\)-module amenable, where \(\mathfrak{T}: = \{ [^\alpha _\alpha ]:\alpha \in \mathfrak{A}\} \).  相似文献   

7.
Let \(\mathbb {F}_{q}\) be the finite field with \(q=p^{m}\) elements, where p is an odd prime and m is a positive integer. For a positive integer t, let \(D\subset \mathbb {F}^{t}_{q}\) and let \({\mathrm {Tr}}_{m}\) be the trace function from \(\mathbb {F}_{q}\) onto \(\mathbb {F}_{p}\). In this paper, let \(D=\{(x_{1},x_{2},\ldots ,x_{t}) \in \mathbb {F}_{q}^{t}\setminus \{(0,0,\ldots ,0)\} : {\mathrm {Tr}}_{m}(x_{1}+x_{2}+\cdots +x_{t})=0\},\) we define a p-ary linear code \(\mathcal {C}_{D}\) by
$$\begin{aligned} \mathcal {C}_{D}=\{\mathbf {c}(a_{1},a_{2},\ldots ,a_{t}) : (a_{1},a_{2},\ldots ,a_{t})\in \mathbb {F}^{t}_{q}\}, \end{aligned}$$
where
$$\begin{aligned} \mathbf {c}(a_{1},a_{2},\ldots ,a_{t})=({\mathrm {Tr}}_{m}(a_{1}x^{2}_{1}+a_{2}x^{2}_{2}+\cdots +a_{t}x^{2}_{t}))_{(x_{1},x_{2},\ldots ,x_{t}) \in D}. \end{aligned}$$
We shall present the complete weight enumerators of the linear codes \(\mathcal {C}_{D}\) and give several classes of linear codes with a few weights. This paper generalizes the results of Yang and Yao (Des Codes Cryptogr, 2016).
  相似文献   

8.
For every genus g, we prove that \({\mathbf{S}^2\times\mathbf{R}}\) contains complete, properly embedded, genus-g minimal surfaces whose two ends are asymptotic to helicoids of any prescribed pitch. We also show that as the radius of the \({\mathbf{S}^2}\) tends to infinity, these examples converge smoothly to complete, properly embedded minimal surfaces in \({\mathbf{R}^3}\) that are helicoidal at infinity. We prove that helicoidal surfaces in \({\mathbf{R}^3}\) of every prescribed genus occur as such limits of examples in \({\mathbf{S}^2\times\mathbf{R}}\).  相似文献   

9.
Let F be an \(L^2\)-normalized Hecke Maaß cusp form for \(\Gamma _0(N) \subseteq {\mathrm{SL}}_{n}({\mathbb {Z}})\) with Laplace eigenvalue \(\lambda _F\). If \(\Omega \) is a compact subset of \(\Gamma _0(N)\backslash {\mathrm{PGL}}_n/\mathrm{PO}_{n}\), we show the bound \(\Vert F|_{\Omega }\Vert _{\infty } \ll _{ \Omega } N^{\varepsilon } \lambda _F^{n(n-1)/8 - \delta }\) for some constant \(\delta = \delta _n> 0\) depending only on n.  相似文献   

10.
O. Blasco 《Positivity》2017,21(2):593-632
To each power-norm \(((E^n, \Vert \cdot \Vert _n):n\in {\mathbb N})\) based on a given Banach space E, we associate two maximal symmetric sequence spaces \(L_\Phi ^E\) and \(L_\Psi ^E\) whose norms \(\Vert (z_k)\Vert _{L_\Phi ^E}\) and \(\Vert (z_k)\Vert _{L_\Psi ^E}\) are defined by \(\sup \{ \Vert (z_1x,\ldots ,z_nx)\Vert _n: \Vert x\Vert =1, n\in {\mathbb N}\}\) and \(\sup \{ \Vert \sum _{k=1}^n z_kx_k\Vert : \Vert (x_1,\ldots ,x_n)\Vert _n=1, n\in {\mathbb N}\}\) respectively. For each \(1\le p\le \infty \), we introduce and study the p-power-norms as those power-norms for which \(L_\Phi ^E=\ell ^p\) and \(L_\Psi ^E=\ell ^{p'}\), where \(1/p+1/p'=1\). As a special cases of p-power-norms we introduce certain smaller class, to be called the class of \(\ell ^p\)-power-norms, which is shown to contain the p-multi-norms defined in (Dales et al., Multi-norms and Banach lattices, 2016), and to coincide with the multi-norms and dual-multi-norms defined in (Dales and Polyakov, Diss Math 488, 2012) in the cases \(p=\infty \) and \(p=1\) respectively. We give several procedures to construct examples of such p-power and \(\ell ^p\)-power-norms and show that the natural formulations of the (pq)-summing, (pq)-concave, Rademacher power norms, t-standard power norms among others are examples in these classes. In particular, for instance the Rademacher power norm is a 2-power norm and the (pq)-summing power-norm is a \(\ell ^r\)-power-norm for \(p>q\) with \(\frac{1}{r}=\frac{1}{q}-\frac{1}{p}\).  相似文献   

11.
It is well known that the pseudovariety \(\mathbf {J}\) of all \(\mathscr {J}\)-trivial monoids is not local, which means that the pseudovariety \(g\mathbf {J}\) of categories generated by \(\mathbf {J}\) is a proper subpseudovariety of the pseudovariety \(\ell \mathbf {J}\) of categories all of whose local monoids belong to \(\mathbf {J}\). In this paper, it is proved that the pseudovariety \(\mathbf {J}\) enjoys the following weaker property. For every prime number p, the pseudovariety \(\ell \mathbf {J}\) is a subpseudovariety of the pseudovariety \(g(\mathbf {J}*\mathbf {Ab}_p)\), where \(\mathbf {Ab}_p\) is the pseudovariety of all elementary abelian p-groups and \(\mathbf {J}*\mathbf {Ab}_p\) is the pseudovariety of monoids generated by the class of all semidirect products of monoids from \(\mathbf {J}\) by groups from \(\mathbf {Ab}_p\). As an application, a new proof of the celebrated equality of pseudovarieties \(\mathbf {PG}=\mathbf {BG}\) is obtained, where \(\mathbf {PG}\) is the pseudovariety of monoids generated by the class of all power monoids of groups and \(\mathbf {BG}\) is the pseudovariety of all block groups.  相似文献   

12.
For completely contractive Banach algebras A and B (respectively operator algebras A and B), the necessary and sufficient conditions for the operator space projective tensor product \({A\widehat{\otimes}B}\) (respectively the Haagerup tensor product \({A\otimes^{h}B}\)) to be Arens regular are obtained. Using the non-commutative Grothendieck inequality, we show that, for C*-algebras A and B, \({A\otimes^{\gamma} B}\) is Arens regular if \({A\widehat{\otimes}B}\) and \({A\widehat{\otimes}B^{op}}\) are Arens regular whereas \({A\widehat{\otimes}B}\) is Arens regular if and only if \({A\otimes^{h}B}\) and \({B\otimes^{h}A}\) are, where \({\otimes^h}\), \({\otimes^{\gamma}}\), and \({\widehat{\otimes}}\) are the Haagerup, the Banach space projective tensor norm, and the operator space projective tensor norm, respectively.  相似文献   

13.
Various functional equations satisfied by one or two (N × N)-matrices \({\mathbf{F}(z) }\) and \({\mathbf{G}(z) }\) depending on the scalar variable z are investigated, with N an arbitrary positive integer. Some of these functional equations are generalizations to the matrix case (N > 1) of well-known functional equations valid in the scalar (N = 1) case, such as \({\mathbf{F}(x) \, \mathbf{F}(y) = \, \mathbf{F}(x y) \, \rm and \, \mathbf{G}({\it x}) \, \mathbf{G}({\it y}) = \mathbf{G}({\it x+y}) }\); others—such as \({\mathbf{G}(y) \, \mathbf{F}(x) = \mathbf{F}(x) \, \mathbf{G}(xy) }\)—possess nontrivial solutions only in the matrix case (N > 1), namely their scalar (N = 1) counterparts only feature quite trivial solutions. It is also pointed out that if two (N × N)-matrices \({\mathbf{F}(x) \, \rm and \, \mathbf{G}({\it y})}\) satisfy the triplet of functional equations written above—and nontrivial examples of such matrices are exhibited— then they also satisfy an endless hierarchy of matrix functional relations involving an increasing number of scalar independent variables, the first items of which read \({\mathbf{F}(x_{1}) \, \mathbf{G}(y_{1}) \, \mathbf{F} (x_{2}) = \mathbf{F}(x_{1} x_{2}) \, \mathbf{G } (x_{2} y_{1}) \, \rm and \, \mathbf{G}({\it y}_{1}) \, \mathbf{F} ({\it x}_{1}) \, \mathbf{G} ({\it y}_{2}) = \mathbf{F} ({\it x}_{1}) \, \mathbf{G} ({\it x}_{1} {\it y}_{1}+{\it y}_{2}) }\).  相似文献   

14.
The first main theorem of this paper asserts that any \((\sigma , \tau )\)-derivation d, under certain conditions, either is a \(\sigma \)-derivation or is a scalar multiple of (\(\sigma - \tau \)), i.e. \(d = \lambda (\sigma - \tau )\) for some \(\lambda \in \mathbb {C} \backslash \{0\}\). By using this characterization, we achieve a result concerning the automatic continuity of \((\sigma , \tau \))-derivations on Banach algebras which reads as follows. Let \(\mathcal {A}\) be a unital, commutative, semi-simple Banach algebra, and let \(\sigma , \tau : \mathcal {A} \rightarrow \mathcal {A}\) be two distinct endomorphisms such that \(\varphi \sigma (\mathbf e )\) and \(\varphi \tau (\mathbf e )\) are non-zero complex numbers for all \(\varphi \in \Phi _\mathcal {A}\). If \(d : \mathcal {A} \rightarrow \mathcal {A}\) is a \((\sigma , \tau )\)-derivation such that \(\varphi d\) is a non-zero linear functional for every \(\varphi \in \Phi _\mathcal {A}\), then d is automatically continuous. As another objective of this research, we prove that if \(\mathfrak {M}\) is a commutative von Neumann algebra and \(\sigma :\mathfrak {M} \rightarrow \mathfrak {M}\) is an endomorphism, then every Jordan \(\sigma \)-derivation \(d:\mathfrak {M} \rightarrow \mathfrak {M}\) is identically zero.  相似文献   

15.
We consider the robust (or min-max) optimization problem
$J^*:=\max_{\mathbf{y}\in{\Omega}}\min_{\mathbf{x}}\{f(\mathbf{x},\mathbf{y}): (\mathbf{x},\mathbf{y})\in\mathbf{\Delta}\}$
where f is a polynomial and \({\mathbf{\Delta}\subset\mathbb{R}^n\times\mathbb{R}^p}\) as well as \({{\Omega}\subset\mathbb{R}^p}\) are compact basic semi-algebraic sets. We first provide a sequence of polynomial lower approximations \({(J_i)\subset\mathbb{R}[\mathbf{y}]}\) of the optimal value function \({J(\mathbf{y}):=\min_\mathbf{x}\{f(\mathbf{x},\mathbf{y}): (\mathbf{x},\mathbf{y})\in \mathbf{\Delta}\}}\). The polynomial \({J_i\in\mathbb{R}[\mathbf{y}]}\) is obtained from an optimal (or nearly optimal) solution of a semidefinite program, the ith in the “joint + marginal” hierarchy of semidefinite relaxations associated with the parametric optimization problem \({\mathbf{y}\mapsto J(\mathbf{y})}\), recently proposed in Lasserre (SIAM J Optim 20, 1995-2022, 2010). Then for fixed i, we consider the polynomial optimization problem \({J^*_i:=\max\nolimits_{\mathbf{y}}\{J_i(\mathbf{y}):\mathbf{y}\in{\Omega}\}}\) and prove that \({\hat{J}^*_i(:=\displaystyle\max\nolimits_{\ell=1,\ldots,i}J^*_\ell)}\) converges to J* as i → ∞. Finally, for fixed ? ≤ i, each \({J^*_\ell}\) (and hence \({\hat{J}^*_i}\)) can be approximated by solving a hierarchy of semidefinite relaxations as already described in Lasserre (SIAM J Optim 11, 796–817, 2001; Moments, Positive Polynomials and Their Applications. Imperial College Press, London 2009).
  相似文献   

16.
Let A be an ordered Banach algebra with a unit \(\mathbf{e}\) and a cone \(A^+\). An element p of A is said to be an order idempotent if \(p^2 = p\) and \(0 \le p\le \mathbf{e}\). An element \(a\in A^+\) is said to be irreducible if the relation \((\mathbf{e}-p)ap = 0\), where p is an order idempotent, implies \(p = 0\) or \(p = \mathbf{e}\). For an arbitrary element a of A the peripheral spectrum \(\sigma _\mathrm{per}(a)\) of a is the set \(\sigma _\mathrm{per}(a) = \{\lambda \in \sigma (a):|\lambda | = r(a)\}\), where \(\sigma (a)\) is the spectrum of a and r(a) is the spectral radius of a. We investigate properties of the peripheral spectrum of an irreducible element a. Conditions under which \(\sigma _\mathrm{per}(a)\) contains or coincides with \(r(a)H_m\), where \(H_m\) is the group of all \(m^\mathrm{th}\) roots of unity, and the spectrum \(\sigma (a)\) is invariant under rotation by the angle \(\frac{2\pi }{m}\) for some \(m\in {\mathbb N}\), are given. The correlation between these results and the existence of a cyclic form of a is considered. The conditions under which a is primitive, i.e., \(\sigma _\mathrm{per}(a) = \{r(a)\}\), are studied. The necessary assumptions on the algebra A which imply the validity of these results, are discussed. In particular, the Lotz–Schaefer axiom is introduced and finite-rank elements of A are defined. Other approaches to the notions of irreducibility and primitivity are discussed. Conditions under which the inequalities \(0 \le b < a\) imply \(r(b) < r(a)\) are studied. The closedness of the center \(A_\mathbf{e}\), i.e., of the order ideal generated by \(\mathbf{e}\) in A, is proved.  相似文献   

17.
We prove Nikol’skii type inequalities that, for polynomials on the n-dimensional torus \(\mathbb {T}^n\), relate the \(L^p\)-norm with the \(L^q\)-norm (with respect to the normalized Lebesgue measure and \(0 <p <q < \infty \)). Among other things, we show that \(C=\sqrt{q/p}\) is the best constant such that \(\Vert P\Vert _{L^q}\le C^{\text {deg}(P)} \Vert P\Vert _{L^p}\) for all homogeneous polynomials P on \(\mathbb {T}^n\). We also prove an exact inequality between the \(L^p\)-norm of a polynomial P on \(\mathbb {T}^n\) and its Mahler measure M(P), which is the geometric mean of |P| with respect to the normalized Lebesgue measure on \(\mathbb {T}^n\). Using extrapolation, we transfer this estimate into a Khintchine–Kahane type inequality, which, for polynomials on \(\mathbb {T}^n\), relates a certain exponential Orlicz norm and Mahler’s measure. Applications are given, including some interpolation estimates.  相似文献   

18.
We study the transition density of a standard two-dimensional Brownian motion killed when hitting a bounded Borel set A. We derive the asymptotic form of the density, say \(p^A_t(\mathbf{x},\mathbf{y})\), for large times t and for \(\mathbf{x}\) and \(\mathbf{y}\) in the exterior of A valid uniformly under the constraint \(|\mathbf{x}|\vee |\mathbf{y}| =O(t)\). Within the parabolic regime \(|\mathbf{x}|\vee |\mathbf{y}| = O(\sqrt{t})\) in particular \(p^A_t(\mathbf{x},\mathbf{y})\) is shown to behave like \(4e_A(\mathbf{x})e_A(\mathbf{y}) (\lg t)^{-2} p_t(\mathbf{y}-\mathbf{x})\) for large t, where \(p_t(\mathbf{y}-\mathbf{x})\) is the transition kernel of the Brownian motion (without killing) and \(e_A\) is the Green function for the ‘exterior of A’ with a pole at infinity normalized so that \(e_A(\mathbf{x}) \sim \lg |\mathbf{x}|\). We also provide fairly accurate upper and lower bounds of \(p^A_t(\mathbf{x},\mathbf{y})\) for the case \(|\mathbf{x}|\vee |\mathbf{y}|>t\) as well as corresponding results for the higher dimensions.  相似文献   

19.
Let \({\mathcal B}_{p,w}\) be the Banach algebra of all bounded linear operators acting on the weighted Lebesgue space \(L^p(\mathbb {R},w)\), where \(p\in (1,\infty )\) and w is a Muckenhoupt weight. We study the Banach subalgebra \(\mathfrak {A}_{p,w}\) of \({\mathcal B}_{p,w}\) generated by all multiplication operators aI (\(a\in \mathrm{PSO}^\diamond \)) and all convolution operators \(W^0(b)\) (\(b\in \mathrm{PSO}_{p,w}^\diamond \)), where \(\mathrm{PSO}^\diamond \subset L^\infty (\mathbb {R})\) and \(\mathrm{PSO}_{p,w}^\diamond \subset M_{p,w}\) are algebras of piecewise slowly oscillating functions that admit piecewise slowly oscillating discontinuities at arbitrary points of \(\mathbb {R}\cup \{\infty \}\), and \(M_{p,w}\) is the Banach algebra of Fourier multipliers on \(L^p(\mathbb {R},w)\). For any Muckenhoupt weight w, we study the Fredholmness in the Banach algebra \({\mathcal Z}_{p,w}\subset \mathfrak {A}_{p,w}\) generated by the operators \(aW^0(b)\) with slowly oscillating data \(a\in \mathrm{SO}^\diamond \) and \(b\in \mathrm{SO}^\diamond _{p,w}\). Then, under some condition on the weight w, we complete constructing a Fredholm symbol calculus for the Banach algebra \(\mathfrak {A}_{p,w}\) in comparison with Karlovich and Loreto Hernández (Integr. Equations Oper. Theory 74:377–415, 2012) and Karlovich and Loreto Hernández (Integr. Equations Oper. Theory 75:49–86, 2013) and establish a Fredholm criterion for the operators \(A\in \mathfrak {A}_{p,w}\) in terms of their symbols. A new approach to determine local spectra is found.  相似文献   

20.
We study generalizations of the classical Bernstein operators on the polynomial spaces \(\mathbb {P}_{n}[a,b]\), where instead of fixing \(\mathbf {1}\) and x, we reproduce exactly \(\mathbf {1}\) and a polynomial \(f_1\), strictly increasing on [ab]. We prove that for sufficiently large n, there always exist generalized Bernstein operators fixing \(\mathbf {1}\) and \(f_1\). These operators are defined by non-decreasing sequences of nodes precisely when \(f_1^\prime > 0\) on (ab), but even if \(f_1^\prime \) vanishes somewhere inside (ab), they converge to the identity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号