首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Transient heat transfer through a longitudinal fin of various profiles is studied. The thermal conductivity and heat transfer coefficients are assumed to be temperature dependent. The resulting partial differential equation is highly nonlinear. Classical Lie point symmetry methods are employed and some reductions are performed. Since the governing boundary value problem is not invariant under any Lie point symmetry, we solve the original partial differential equation numerically. The effects of realistic fin parameters such as the thermogeometric fin parameter and the exponent of the heat transfer coefficient on the temperature distribution are studied.  相似文献   

2.
Some new conservation laws for the transient heat conduction problem for heat transfer in a straight fin are constructed. The thermal conductivity is given by a power law in one case and by a linear function of temperature in the other. Conservation laws are derived using the direct method when thermal conductivity is given by the power law and the multiplier method when thermal conductivity is given as a linear function of temperature. The heat transfer coefficient is assumed to be given by the power law function of temperature. Furthermore, we determine the Lie point symmetries associated with the conserved vectors for the model with power law thermal conductivity.  相似文献   

3.
The Lie group method is applied to present an analysis of the magneto hydro-dynamics(MHD) steady laminar flow and the heat transfer from a warm laminar liquid flow to a melting moving surface in the presence of thermal radiation.By using the Lie group method,we have presented the transformation groups for the problem apart from the scaling group.The application of this method reduces the partial differential equations(PDEs) with their boundary conditions governing the flow and heat transfer to a system of nonlinear ordinary differential equations(ODEs) with appropriate boundary conditions.The resulting nonlinear system of ODEs is solved numerically using the implicit finite difference method(FDM).The local skin-friction coefficients and the local Nusselt numbers for different physical parameters are presented in a table.  相似文献   

4.
This article investigates the thermal performance of convective-radiative annular fins with a step reduction in local cross section (SRC). The thermal conductivity of the fin’s material is assumed to be a linear function of temperature, and heat transfer coefficient is assumed to be a power-law function of surface temperature. Moreover, nonzero convection and radiation sink temperatures are included in the mathematical model of the energy equation. The well-known differential transformation method (DTM) is used to derive the analytical solution. An exact analytical solution for a special case is derived to prove the validity of the obtained results from the DTM. The model provided here is a more realistic representation of SRC annular fins in actual engineering practices. Effects of many parameters such as conduction-convection parameters, conduction-radiation parameter and sink temperature, and also some parameters which deal with step fins such as thickness parameter and dimensionless parameter describing the position of junction in the fin on the temperature distribution of both thin and thick sections of the fin are investigated. It is believed that the obtained results will facilitate the design and performance evaluation of SRC annular fins.  相似文献   

5.
In this study, a novel application of neurocomputing technique is presented for solving nonlinear heat transfer and natural convection porous fin problems arising in almost all areas of engineering and technology, especially in mechanical engineering. The mathematical models of the problems are exploited by the intelligent strength of Euler polynomials based Euler neural networks (ENN’s), optimized with a generalized normal distribution optimization (GNDO) algorithm and Interior point algorithm (IPA). In this scheme, ENN’s based differential equation models are constructed in an unsupervised manner, in which the neurons are trained by GNDO as an effective global search technique and IPA, which enhances the local search convergence. Moreover, a temperature distribution of heat transfer and natural convection porous fin are investigated by using an ENN-GNDO-IPA algorithm under the influence of variations in specific heat, thermal conductivity, internal heat generation, and heat transfer rate, respectively. A large number of executions are performed on the proposed technique for different cases to determine the reliability and effectiveness through various performance indicators including Nash–Sutcliffe efficiency (NSE), error in Nash–Sutcliffe efficiency (ENSE), mean absolute error (MAE), and Thiel’s inequality coefficient (TIC). Extensive graphical and statistical analysis shows the dominance of the proposed algorithm with state-of-the-art algorithms and numerical solver RK-4.  相似文献   

6.
Perturbation methods depend on a small parameter which is difficult to be found for real-life nonlinear problems. To overcome this shortcoming, two new but powerful analytical methods are introduced to solve nonlinear heat transfer problems in this Letter; one is He's variational iteration method (VIM) and the other is the homotopy–perturbation method (HPM). Nonlinear convective–radiative cooling equations are used as examples to illustrate the simple solution procedures. These methods are useful and practical for solving the nonlinear heat diffusion equation, which is associated with variable thermal conductivity condition. Comparison of the results obtained by both methods with exact solutions reveals that both methods are tremendously effective.  相似文献   

7.
Symmetry Analysis and Conservation Laws for the Hunter-Saxton Equation   总被引:1,自引:0,他引:1  
In this paper,the problem of determining the most general Lie point symmetries group and conservation laws of a well known nonlinear hyperbolic PDE in mathematical physics called the Hunter-Saxton equation(HSE) is analyzed.By applying the basic Lie symmetry method for the HSE,the classical Lie point symmetry operators are obtained.Also,the algebraic structure of the Lie algebra of symmetries is discussed and an optimal system of onedimensional subalgebras of the HSE symmetry algebra which creates the preliminary classification of group invariant solutions is constructed.Particularly,the Lie invariants as well as similarity reduced equations corresponding to infinitesimal symmetries are obtained.Mainly,the conservation laws of the HSE are computed via three different methods including Boyer's generalization of Noether's theorem,first homotopy method and second homotopy method.  相似文献   

8.
We consider thermal conduction across a general nonlinear phononic junction. Based on two-time observation protocol and the nonequilibrium Green’s function method, heat transfer in steady-state regimes is studied, and practical formulas for the calculation of the cumulant generating function are obtained. As an application, the general formalism is used to study anharmonic effects on fluctuation of steady-state heat transfer across a single-site junction with a quartic nonlinear on-site pinning potential. An explicit nonlinear modification to the cumulant generating function exact up to the first order is given, in which the Gallavotti-Cohen fluctuation symmetry is found still valid. Numerically a self-consistent procedure is introduced, which works well for strong nonlinearity.  相似文献   

9.
罗绍凯  郭永新  梅凤翔 《物理学报》2004,53(5):1270-1275
研究非完整力学系统的Noether对称性导致的非Noether守恒量——Hojman守恒量. 在时间不变的特殊无限小变换下,给出系统的特殊Noether对称性与守恒量,并给出特殊Noether对称性导致特殊Lie对称性的条件. 由系统的特殊Noether对称性,得到相应完整系统的Hojman守恒量以及非完整系统的弱Hojman守恒量和强Hojman守恒量. 给出一个例子说明本结果的应用 关键词: 分析力学 非完整系统 Noether对称性 非Noether守恒量 Hojman守恒量  相似文献   

10.
文中针对三维坐标系下,圆翅片叉排热管散热器的流动和传热特性进行数值模拟研究。分析了三个主要影响因素:翅片间距、翅片厚度和排间距对平均换热系数、流动摩擦系数和热阻的影响。翅片间距分别为6mm、7mm和8mm,翅片厚度分别为0.8mm、1mm和1.2mm,排间距分别为21.7mm、23mm和24.3mm。模拟结果表明:随着迎面风速增加,摩擦系数减小,传热热阻减小;随着翅片厚度的增加,摩擦系数减小、换热能力增强,热阻在大Re时增大明显。随着翅片间距的增大,摩擦系数增大,换热能力提高,热阻增大;随着排间距的增大,摩擦系数在正三角形管排布时的值上下变动,且只有排间距显著增大时,换热能力和热阻才会增大。  相似文献   

11.
We present a numerical simulation method of Noether and Lie symmetries for discrete Hamiltonian systems. The Noether and Lie symmetries for the systems are proposed by investigating the invariance properties of discrete Lagrangian in phase space. The numerical calculations of a two-degree-of-freedom nonlinear harmonic oscillator show that the difference discrete variational method preserves the exactness and the invariant quantity.  相似文献   

12.
1数学描述与计算方法周期性变化的几何结构是广泛应用的一种强化换热形式*‘]。文献中有关的数值研究多限于二维清形,三维的研究相对较少。本文针对沿流向周期性布置矩肋的平行平板通道,对层流周期性充分发展的流动与换热进行了三维数值模拟。计算单元如图1所示。对于不可压缩流体,忽略体积力时的控制方程为:图1矩助通道计算单元表1式(l)中各乡变量的含义式中d取不同值的对应关系见表1。设通道几何周期长度为S,则对充分发展状态的计算单元进出边界有如下关系:据文献*,周期性充分发展流动的压力可以分解为两部分:式中o为一个周…  相似文献   

13.
Nanofluids present a new type of dispersed fluids consisting of a carrier fluid and solid nanoparticles. Unusual properties of nanofluids, particularly high thermal conductivity, make them eminently suitable for many thermophysical applications, e.g., for cooling of equipment, designing of new heat energy transportation and production systems and so on. This requires a systematic study of heat exchange properties of nanofluids. The present paper contains the measurement results for the heat transfer coefficient of the laminar and turbulent flow of nanofluids on the basis of distilled water with silica, alumina and copper oxide particles in a minichannel with circular cross section. The maximum volume concentration of particles did not exceed 2%. The dependence of the heat transfer coefficient on the concentration and size of nanoparticles was studied. It is shown that the use of nanofluids allows a significant increase in the heat transfer coefficient as compared to that for water. However, the obtained result strongly depends on the regime of flow. The excess of the heat transfer coefficient in the laminar flow is only due to an increase in the thermal conductivity coefficient of nanofluid, while in the turbulent flow the obtained effect is due to the ratio between the viscosity and thermal conductivity of nanofluid. The viscosity and thermal conductivity of nanofluids depend on the volume concentration of nanoparticles as well as on their size and material and are not described by classical theories. That is why the literature data are diverse and contradictory; they do not actually take into account the influence of the mentioned factors (size and material of nanoparticles). It has been shown experimentally and by a molecular dynamics method that the nanofluid viscosity increases while the thermal conductivity decreases with the decreasing dispersed particle size. It is found experimentally for the first time that the nanofluid viscosity coefficient depends on the particle material. The higher is the density of particles, the higher is the thermal conductivity coefficient of nanofluid.  相似文献   

14.
Heat transfer enhancement in the annular fins with uniform profile is investigated in the present study. Conventional fin materials are replaced with the functionally graded materials in order to increase the rate of heat transfer and corresponding fin efficiency. Here, the fin material properties, such as conductivity, are assumed to be graded along the annular fin radius, R, as a linear function. The governing equation of the annular fin is computed with an approximate analytical method using the mean value theorem. It is revealed that the in-homogeneity index, β, of the fin material plays an important role on the thermal characteristics of the annular fins. Alternatively, heat dissipation between the fin surface and surrounding fluid in the annular fins increases with increasing the inhomogeneity indices, β. Finally, it is stated that application of the functionally graded material in the annular fins enhances the fin efficiency in comparison to the annular fins with homogeneous material. It is hoped that the results obtained from this study arouse interest among thermal designers and heat exchanger industries.  相似文献   

15.
施沈阳  黄晓虹  张晓波  金立 《物理学报》2009,58(6):3625-3631
研究离散差分Hamilton系统的Lie对称性与Noether守恒量. 根据扩展的时间离散力学变分原理构建Hamilton系统的差分动力学方程.定义离散系统运动差分方程在无限小变换群下的不变性为Lie对称性, 导出由Lie对称性得到系统离散Noether守恒量的判据. 举例说明结果的应用. 关键词: 离散力学 差分Hamilton系统 Lie对称性 Noether守恒量  相似文献   

16.
夏丽莉  陈立群 《中国物理 B》2012,21(7):70202-070202
The Noether conserved quantities and the Lie point symmetries for difference nonholonomic Hamiltonian systems in irregular lattices are studied. The generalized Hamiltonian equations of the systems are given on the basis of the transformation operators in the space of discrete Hamiltonians. The Lie transformations acting on the lattice, as well as the equations and the determining equations of the Lie symmetries are obtained for the nonholonomic Hamiltonian systems. The discrete analogue of the Noether conserved quantity is constructed by using the Lie point symmetries. An example is discussed to illustrate the results.  相似文献   

17.
Theoretical and numerical outcomes of the non-Newtonian Casson liquid thin film fluid flow owing to an unsteady stretching sheet which exposed to a magnetic field, Ohmic heating and slip velocity phenomena is reported here. The non-Newtonian thermal conductivity is imposed and treated as it vary with temperature. The nonlinear partial differential equations governing the non-Newtonian Casson thin film fluid are simplified into a group of highly nonlinear ordinary differential equations by using an adequate dimensionless transformations. With this in mind, the numerical solutions for the ordinary conservation equations are found using an accurate shooting iteration technique together with the Runge-Kutta algorithm. The lineaments of the thin film flow and the heat transfer characteristics for the pertinent parameters are discussed through graphs. The results obtained here detect many concern for the local Nusselt number and the local skin-friction coefficient in which they may be beneficial for the material processing industries. Furthermore, in some special conditions, the present problem has an excellent agreement with previously published work.  相似文献   

18.
Symmetries of spacetime manifolds which are given by Killing vectors are compared with the symmetries of a Lagrangian constructed from a Weyl re-scaled metric used in discussing disorder operators in Gauge theories. We find the point generators of the one parameter Lie groups of transformations that leave invariant the action integral corresponding to the Lagrangian (Noether symmetries). It is shown that the Noether symmetries obtained by considering the Lagrangian provide additional symmetries which are not provided by the Killing vectors. New conservation law/s are determined.  相似文献   

19.
In this paper, the modified CK's direct method to find symmetry groups of nonlinear partial differential equation is extended to (2 1)-dimensional variable coefficient canonical generalized KP (VCCGKP) equation. As a result, symmetry groups, Lie point symmetry group and Lie symmetry for the VCCGKP equation are obtained. In fact, the Lie point symmetry group coincides with that obtained by the standard Lie group approach. Applying the given Lie symmetry, we obtain five types of similarity reductions and a lot of new exact solutions, including hyperbolic function solutions, triangular periodic solutions, Jacobi elliptic function solutions and rational solutions, for the VCCGKP equation.  相似文献   

20.
通过导热反问题反演求解导热系数通常误差较大,本文构建考虑热损耗条件下的虚拟薄板模型精确求解导热系数。首先通过数值算例验证模型的准确性和稳定性,正向问题使用有限差分法进行求解,反问题求解采用人工蜂群算法进行目标函数最优化。然后搭建第二类边界条件下导热正向装置,进行导热系数实例反演和实验研究,并将新模型与理论模型反演结果对比分析。结果表明理论模型反演结果的相对误差约为-14.76%,而新模型下导热系数反演相对误差达到-4.67%。新模型较理论模型反演结果更精确,有效降低了热损耗对反演的影响,提高了反演精度,更符合实际工况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号