首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phagocytes such as neutrophils play a vital role in host defense against microbial pathogens. The anti-microbial function of neutrophils is based on the production of superoxide anion (O2•-), which generates other microbicidal reactive oxygen species (ROS) and release of antimicrobial peptides and proteins. The enzyme responsible for O2•- production is called the NADPH oxidase or respiratory burst oxidase. This multicomponent enzyme system is composed of two transmembrane proteins (p22phox and gp91phox, also called NOX2, which together form the cytochrome b558) and four cytosolic proteins (p47phox, p67phox, p40phox and a GTPase Rac1 or Rac2), which assemble at membrane sites upon cell activation. NADPH oxidase activation in phagocytes can be induced by a large number of soluble and particulate agents. This process is dependent on the phosphorylation of the cytosolic protein p47phox. p47phox is a 390 amino acids protein with several functional domains: one phox homology (PX) domain, two src homology 3 (SH3) domains, an auto-inhibitory region (AIR), a proline rich domain (PRR) and has several phosphorylated sites located between Ser303 and Ser379. In this review, we will describe the structure of p47phox, its phosphorylation and discuss how these events regulate NADPH oxidase activation.  相似文献   

2.
Abstract— Cytochrome b558 in solubilized membranes prepared from porcine neutrophils was reduced by dithionite with a second-order rate constant of 2.5 times 106 M-1 s-1 at pH 7.4 and 20°C accompanied by spectral changes with peaks at 428 nm and 560 nm and isosbestic points at 420 and 441 nm. When an anaerobic mixture of solubilized membranes and NAD(P)H was exposed to a white light, cytochrome b558 was reduced biphasically but with almost the same spectral profiles as in the dithionite reduction. Thus, participation of redox component(s) of unknown nature in the photochemical reduction was suggested. The NAD(P)- radical generated by photoexcitation of NAD(P)H with a 355 nm laser pulse under anaerobic conditions also reduced cytochrome b558 with a high rate constant of 4.3 times 108M-1 s-1 at pH 7.4 and 20°C. The reduction of cytochrome b558 accompanied a simultaneous reduction of a component having an absorption band around 420 nm, suggesting participation of an iron-sulfur (Fe-S) cluster. The cytochrome b558 reduction was followed by its reoxidation by another component with an apparent second-order rate constant of 6.5 times 105M-1 s-1. During the reoxidation, the Fe-S-like component remained in the reduced state, and thus its role other than as electron mediator in neutrophils NADPH oxidase is suggested. Not only the rate constant but also the extent of cytochrome b558 reoxidation decreased as the same reaction mixture was exposed to the laser pulse repeatedly. This result clearly indicates that an electron accumulates in this electron-accepting component designated tentatively as the ω component.  相似文献   

3.
A. Ashkenazi  R.S. Marks 《Talanta》2009,77(4):1460-4894
Several methodologies have been used in clinical chemistry for real-time assessment of NADPH oxidase primary product superoxide anion which dismutases to hydrogen peroxide. Among these methodologies, isoluminol chemiluminescence (CL) is considered to be one of the more sensitive and reliable techniques for the assessment of NADPH oxidase activity in neutrophils. The electrochemical technique was recently designed and also applied for real-time detection of NADPH oxidase activity in neutrophils but its reliability and sensitivity has not been investigated so far. In this study, isoluminol CL and electrochemical techniques were investigated and compared by monitoring the generation of superoxide and hydrogen peroxide in both PLB 985 cell line differentiated into neutrophil-like cells and human neutrophils. The electrochemical technique was shown to be as sensitive as that of CL and able to detect the reactive oxygen species (ROS) release of as low as 500 cells. Thus, the electrochemical technique could be used as an alternative to optical techniques for the evaluation of extracellular ROS in phagocyte cells.  相似文献   

4.
Elevated plasma concentration of native low-density lipoprotein (nLDL) is associated with vascular smooth muscle cell (VSMC) activation and cardiovascular disease. We investigated the mechanisms of superoxide generation and its contribution to pathophysiological cell proliferation in response to nLDL stimulation. Lucigenin-induced chemiluminescence was used to measure nLDL-induced superoxide production in human aortic smooth muscle cells (hAoSMCs). Superoxide production was increased by nicotinamide adenine dinucleotide phosphate (NADPH) and decreased by NADPH oxidase inhibitors in nLDL-stimulated hAoSMC and hAoSMC homogenates, as well as in prepared membrane fractions. Extracellular signal-regulated kinase 1/2 (Erk1/2), protein kinase C-θ (PKCθ) and protein kinase C-β (PKCβ) were phosphorylated and maximally activated within 3 min of nLDL stimulation. Phosphorylated Erk1/2 mitogen-activated protein kinase, PKCθ and PKCβ stimulated interactions between p47phox and p22phox; these interactions were prevented by MEK and PKC inhibitors (PD98059 and calphostin C, respectively). These inhibitors decreased nLDL-dependent superoxide production and blocked translocation of p47phox to the membrane, as shown by epifluorescence imaging and cellular fractionation experiments. Proliferation assays showed that a small interfering RNA against p47phox, as well as superoxide scavenger and NADPH oxidase inhibitors, blocked nLDL-induced hAoSMC proliferation. The nLDL stimulation in deendothelialized aortic rings from C57BL/6J mice increased dihydroethidine fluorescence and induced p47phox translocation that was blocked by PD98059 or calphostin C. Isolated aortic SMCs from p47phox−/− mice (mAoSMCs) did not respond to nLDL stimulation. Furthermore, NADPH oxidase 1 (Nox1) was responsible for superoxide generation and cell proliferation in nLDL-stimulated hAoSMCs. These data demonstrated that NADPH oxidase activation contributed to cell proliferation in nLDL-stimulated hAoSMCs.  相似文献   

5.
Elucidating the structure and properties of the active sites in cbb3 heme-copper oxidase and in nitric oxide reductase (Nor) is crucial in understanding the reaction mechanisms of oxygen and nitric oxide reduction by both enzymes. In the work here, we have applied resonance Raman (RR) spectroscopy to investigate the structure and properties of the binuclear heme b3-CuB center of cbb3 heme-copper oxidase from Pseudomonas stutzeri and the dinuclear heme b3-FeB center of Nor from Paracoccus denitrificans in the ligand-free and CO-bound forms and in the reactions with O2 and NO. The RR data demonstrate that in the Nor/NO reaction, the formation of the N-N bond occurs with the His-Fe heme b3 bond intact, and reformation of the heme b3-O-FeB dinuclear center causes the rupture of the proximal His-Fe heme b3 bond. In the reactions of Nor and cbb3 with O2, distinct oxidized heme b3 species, which differ from the as-isolated oxidized forms, have been characterized. The activation and reduction of O2 and NO by cbb3 oxidase and nitric oxide reductase are compared and discussed.  相似文献   

6.
High-resolution resonance Raman (RR) and resonance Raman optical activity (ROA) spectra of cytochrome c were obtained in order to perform full assignment of spectral features of the resonance ROA spectrum. The resonance ROA spectrum of cytochrome c revealed a distinct spectral signature pattern due to resonance enhanced skeletal porphyrin vibrations, more pronounced than any contribution from the protein backbone. Combining the intrinsic resonance properties of cytochrome c with the surface plasmon enhancement achieved with colloidal silver particles, the surface enhanced resonance Raman scattering (SERRS) and surface enhanced resonance ROA (SERROA) spectra of the protein were successfully obtained at concentrations as low as 1 microM. The assignments of spectral features were based on the information obtained from the RR and resonance ROA spectra. Excellent agreement between RR and SERRS spectra is reported, while some disparities were observed between the resonance ROA and SERROA spectra. These differences can be ascribed to perturbations of the physical properties of the protein upon adhesion to the surface of the silver colloids.  相似文献   

7.
Stimulated Raman scattering (SRS) microscopy is a newly developed label-free chemical imaging technique that overcomes the speed limitation of confocal Raman microscopy while avoiding the nonresonant background problem of coherent anti-Stokes Raman scattering (CARS) microscopy. Previous demonstrations have been limited to single Raman band measurements. We present a novel modulation multiplexing approach that allows real-time detection of multiple species using the fast Fourier transform. We demonstrate the quantitative determination of chemical concentrations in a ternary mixture. Furthermore, two imaging applications are pursued: (1) quantitative determination of oil content as well as pigment and protein concentration in microalgae cultures; and (2) 3D high-resolution imaging of blood, lipids, and protein distribution in ex vivo mouse skin tissue. We believe that quantitative multiplex SRS uniquely combines the advantage of fast label-free imaging with the fingerprinting capability of Raman spectroscopy and enables numerous applications in lipid biology as well as biomedical imaging.  相似文献   

8.
Abstract— The excitation spectrum for bacteriochlorophyll b fluorescence at 1027 mμ in Rhodopseudomonas sp. NHTC 133 indicates that the efficiency of energy transfer from caro-tenoid to bacteriochlorophyll b is between 27 and 28 %.
Light-induced absorbancy changes in anaerobic whole cells indicated the oxidation of three c -type cytochromes (C-550. 5, C-553, C-558) and one b -type cytochrome or cytochromoid C (C-560). At low light intensities C-553 is the main cytochrome oxidized, while at high light intensities mainly C-558 is oxidized in addition to C-553. The light responses of the heme proteins appear to be similar to those observed previously in purple and green photo-synthetic bacteria. No light-induced shifts in carotenoid absorption bands were detected.
In bacterial extracts C-553 and C-558 are bound to the chromatophores, while C-550. 5 is soluble.  相似文献   

9.
The effects of para-Sulphonato-calix[4]arene, para-Sulphonato-calix[6]arene and para-Sulphonato-calix[8]arene on the activation of NADPH oxidase in neutrophils has been studied. All three molecules do not induce NADPH oxidase activation, and hence do not stimulate neutrophils. Measurement of cell viability demonstrates that these three water-soluble calix[n]arene derivatives are not cytotoxic.  相似文献   

10.
Previous studies have demonstrated that rottlerin, a specific PKCdelta inhibitor, potentiates death receptor- mediated apoptosis through a cytochrome c-dependent or -independent pathway. However, its ability to regulate necrotic cell death, as well as the underlying mechanism, remains unknown. We found that in murine fibrosarcoma L929 cells, treatment with rottlerin protected the cells against TNF-induced necrosis, whereas it sensitized the cells to apoptosis induced by co-treatment with Hsp90 inhibitor geldanamycin and TNF, in a manner independent of its ability to inhibit PKC-delta. TNF treatment induced rapid accumulation of mitochondrial superoxide (O2-) through the Nox1 NADPH oxidase when cells undergo necrosis. Moreover, pretreatment with rottlerin failed to induce the GTP-bound form of small GTPase Rac1 by TNF treatment, and subsequently suppressed mitochondrial O2- production and poly(ADP-ribose) polymerase activation, thus inhibiting necrotic cell death. Therefore, our study suggests that Nox1 NADPH oxidase is a new molecular target for anti-necrotic activity of rottlerin upon death-receptor ligation.  相似文献   

11.
Resonance Raman (RR) spectroscopy has several advantages over the normal Raman spectroscopy (RS) widely used for in situ characterization of solid catalysts and catalytic reactions. Compared with RS, RR can provide much higher sensitivity and selectivity in detecting catalytically-significant surface metal oxides. RR can potentially give useful information on the nature of excited states relevant to photocatalysis and on the anharmonic potential of the ground state. In this critical review a detailed discussion is presented on several types of RR experimental systems, three distinct sources of so-called Raman (fluorescence) background, detection limits for RR compared to other techniques (EXAFS, PM-IRAS, SFG), and three well-known methods to assign UV-vis absorption bands and a band-specific unified method that is derived mainly from RR results. In addition, the virtues and challenges of surface-enhanced Raman spectroscopy (SERS) are discussed for detecting molecular adsorbates at catalytically relevant interfaces. Tip-enhanced Raman spectroscopy (TERS), which is a combination of SERS and near-field scanning probe microscopy and has the capability of probing molecular adsorbates at specific catalytic sites with an enormous surface sensitivity and nanometre spatial resolution, is also reviewed (300 references).  相似文献   

12.
In an aim to probe the structure-function relationship of prostacyclin synthase (PGIS), resonance Raman (RR) spectroscopy and molecular dynamic (MD) simulation approaches have been exploited to characterize the heme conformation and heme-protein matrix interactions for human PGIS (hPGIS) and zebrafish PGIS (zPGIS) in the presence and absence of ligands. The high-frequency RR (1300-1700 cm(-1)) indicates that the heme group is in the ferric, six-coordinate, low-spin state for both resting and ligand-bound hPGIS/zPGIS. The low-frequency RR (300-500 cm(-1)) and MD simulation reveal a salient difference in propionate-protein matrix interactions between hPGIS and zPGIS, as evident by a predominant propionate bending vibration at 386 cm(-1) in resting hPGIS, but two vibrations near 370 and 387 cm(-1) in resting zPGIS. Upon binding of a substrate analogue (U46619, U51605, or U44069), both hPGIS and zPGIS induce a distinctive perturbation of the propionate-protein matrix interactions, resulting in similar Raman shifts to ~381 cm(-1). On the contrary, the bending vibration remains unchanged upon binding of inhibitor/ligand (minoxidil, clotrimazole, or miconazole), indicating that these inhibitors/ligands do not interfere with the propionate-protein matrix interactions. These results, together with subtle changes in vinyl bending modes, demonstrate drastically different RR shifts with heme conformational changes in both hPGIS and zPGIS upon different ligand bindings, suggesting that PGIS exhibits a ligand-specific heme conformational change to accommodate the substrate binding. This substrate-induced modulation of the heme conformation may confer high product fidelity upon PGIS catalysis.  相似文献   

13.
The complete vibrational analysis of [(1-MeIm)Fe(OEP)-CN-Cu(Me(6)tren)](2+) (1), which has been constructed as a model for the cyanide-ligated binuclear center in the respiratory protein cytochrome c oxidase, has been carried out. The resonance Raman spectra (lambda(exc) = 647 nm) and the mid-infrared spectra display three cyanide isotope-dependent vibrational modes. Two vibrations showed monotonic decreases with increasing mass of the cyanide ligand (2182-2137-2146-2101 cm(-)(1) and 535-526-526-520 cm(-)(1), respectively, for the (12)C(14)N-(13)C(14)N-(12)C(15)N-(13)C(15)N isotopomers), and could thus be assigned to the C&tbd1;N and Fe-CN-Cu stretching vibrations, respectively. The third vibration, detected with resonance Raman, showed a zigzag-type behavior (495-487-493-485 cm(-)(1) with the set of isotopomers above) with the frequency being more sensitive to (13)C labeling of the cyanide ligand than with (15)N labeling. This pattern of isotopic dependence is characteristic of a bending vibration. Additionally, with the same laser excitation frequency, the C&tbd1;N stretching mode was observed, which is the first time that this vibration has been detected in the resonance Raman spectrum of a synthetic heme-cyanide complex. The normal coordinate analysis showed marked differences between bridged and unbridged heme-cyanide complexes. Internal coordinates that are orthogonal in unbridged systems are significantly mixed in the bridged model, despite the overall linearity of the Fe-CN-Cu moiety. These measurements strengthen the proposal that cyanide bridges the two metal atoms in the cyanide-ligated, oxidized binuclear center of cytochrome c oxidase. A quantitative consideration of the vibrational characteristics of cyanide bound to the resting enzyme, in light of our model compound results, strongly suggests that the binuclear center is flexible and can undergo structural rearrangement to accommodate exogenous ligands. This is likely to be of mechanistic importance in both dioxygen reduction and proton translocation.  相似文献   

14.
Phagocytosis by inflammatory cells is an essential step and a part of innate immunity for protection against foreign pathogens, microorganism or dead cells. Phagocytosis, endocytotic events sequel to binding particle ligands to the specific receptors on phagocyte cell surface such as Fcgamma recptor (FcgammaR), complement receptor (CR), beta-glucan receptor, and phosphatidylserine (PS) receptor, require actin assembly, pseudopod extension and phagosome closure. Rho GTPases (RhoA, Cdc42, and Rac1) are critically involved in these processes. Abrupt superoxide formation, called as oxidative burst, occurs through NADPH oxidase complex in leukocytes following phagocytosis. NADPH oxidase complex is composed of membrane proteins, p22PHOX and gp91PHOX, and cytosolic proteins, p40PHOX, p47PHOX and p67PHOX. The cytosolic subunits and Rac-GTP are translocated to the membrane, forming complete NADPH oxidase complex with membrane part subunits. Binding of imunoglobulin G (IgG)- and complement-opsonized particles to FcgammaR and CR of leukocytes induces apoptosis of the cells, which may be due to oxidative burst and accompanying cytochrome c release and casapase-3 activation.  相似文献   

15.
The NADPH oxidase enzyme complex, NOX2, is responsible for reactive oxygen species production in neutrophils and has been recognized as a key mediator of inflammation. Here, we have performed rational design and in?silico screen to identify a small molecule inhibitor, Phox-I1, targeting the interactive site of p67(phox) with Rac GTPase, which is a necessary step of the signaling leading to NOX2 activation. Phox-I1 binds to p67(phox) with a submicromolar affinity and abrogates Rac1 binding and is effective in inhibiting NOX2-mediated superoxide production dose-dependently in human and murine neutrophils without detectable toxicity. Medicinal chemistry characterizations have yielded promising analogs and initial information of the structure-activity relationship of Phox-I1. Our studies suggest the potential utility of Phox-I class inhibitors in NOX2 oxidase inhibition and present an application of rational targeting of a small GTPase-effector interface.  相似文献   

16.
Standard techniques for examining the distribution of vitamin A in liver either require staining or lead to rapid photobleaching of the molecule. A potentially better alternative approach is to use coherent anti‐Stokes Raman scattering (CARS) microscopy; a fast, label‐free, non‐disruptive imaging method that provides contrast based on molecular vibrations. This contribution evaluates the viability of CARS microscopy for imaging vitamin A within thick hepatic tissue under physiological conditions by tuning into its characteristic vibrational band in the fingerprint region. Additional information about the morphology and architecture of the tissue was acquired using second harmonic generation (SHG) and multi‐photon excited fluorescence (MPEF) to help mapping the intra‐lobular positions of the vitamin A droplets. We demonstrate the capability of our multimodal imaging framework to selectively image lipid‐soluble vitamin A droplets deep in bulk liver tissue with a high contrast while co‐registering a complementary morphological background that clearly visualizes hepatic lobules. The results obtained envisage the good prospect of the technique for in vivo studies assessing vitamin A distribution heterogeneity and how it is affected by the progression of hepatic diseases.  相似文献   

17.
Alkynes can be metabolically incorporated into biomolecules including nucleic acids, proteins, lipids, and glycans. In addition to the clickable chemical reactivity, alkynes possess a unique Raman scattering within the Raman‐silent region of a cell. Coupling this spectroscopic signature with Raman microscopy yields a new imaging modality beyond fluorescence and label‐free microscopies. The bioorthogonal Raman imaging of various biomolecules tagged with an alkyne by a state‐of‐the‐art Raman imaging technique, stimulated Raman scattering (SRS) microscopy, is reported. This imaging method affords non‐invasiveness, high sensitivity, and molecular specificity and therefore should find broad applications in live‐cell imaging.  相似文献   

18.
The pH-dependent resonance Raman (RR) spectral changes of the cytochrome bc1-associated, high-potential Rieske proteins have frequently been invoked to explain the redox-linked ionization behavior. We report herein RR spectral data of archaeal and bacterial Rieske proteins that directly demonstrate the pH-dependent changes near and above pKa,ox2, but not around pKa,ox1, of the visible circular dichroism (CD) transitions. The RR spectral changes are attributed to modification of the immediate [2Fe-2S] cluster environment due to deprotonation of some exchangeable amide groups in the polypeptide backbone, rather than previously assumed simple changes of the Fe-Nimid stretching vibrations.  相似文献   

19.
Small angle X-ray diffraction (SAXD), resonance Raman (RR) spectroscopy with 413 nm excitation, and non-resonance Raman technique with 785 nm excitation were used to probe the influence of entrapped cytochrome c (Cyt c) on the structure of hydrated phytantriol (Phyt) liquid-crystalline phases as well as conformational changes of heme group and secondary structure of the protein. SAXD measurements indicated that incorporation of Cyt c affects both nanostructure dimensions and type of liquid-crystalline phases of hydrated Phyt. The unit cell dimensions decrease with increasing Cyt c concentration for all phases. In addition, protein perturbs the nanostructure of Q(230) and Q(224) liquid-crystalline phases of hydrated Phyt to such an extent that they transform into the Q(229) phase with the Im3m space group. RR data revealed that entrapment of oxidized Cyt c into the Q(230) phase at 1 wt.% content results in near complete reduction of central iron ion of the heme group, while its low-spin state and six-ligand coordination configuration are preserved. Based on the analysis of heme out-of-plane folding vibration near 568 cm(-1) (γ(21)) and ν(48) mode at 633 cm(-1), it was demonstrated that the protein matrix tension on the heme group is relaxed upon incorporation of protein into Q(230) phase. Non-resonant Raman bands of difference spectra showed the preservation of α-helix secondary structure of Cyt c in the liquid-crystalline phase at relatively high (5 wt.%) content. The Cyt c induced spectroscopic changes of Phyt bands were found to be similar as decrease in temperature.  相似文献   

20.
Scanning probe microscopy was used to monitor the resulting surface of the oriented incorporation of cytochrome c oxidase into electrode supported lipid bilayer at four crucial stages with molecular resolution. We were able to reveal the formation of a densely packed monolayer of the active ester dithio(succiniimidylepropionate) (DTSP) and the covalent linkage of the nitrilotriacetic acid (NTA) to the thiol anchored DTSP by scanning tunneling microscopy. Atomic force microscopy investigations showed that the detergent solubilized oxidase is immobilized as monomers and small aggregates via histidine residues. Finally, the reconstitution of the proteins within the supported membrane was verified. The amount of oxidase immobilized within the solid supported membrane was estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号