首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 635 毫秒
1.
In this paper we investigate the influence of spin–orbit interaction and two types of Rashba interaction (intrinsic and extrinsic) on magnetic and thermoelectric properties of graphene-like zigzag nanoribbons based on the honeycomb lattice. We utilize the Kane-Mele model with additional Rashba interaction terms. Magnetic structure is described by the electron-electron Coulomb repulsion reduced to the on-site interaction (Hubbard term) in the mean field approximation. We consider four types of magnetic configurations: ferromagnetic and antiferromagnetic with in-plane and out-of plane direction of magnetization. Firstly, we analyze the influence of extrinsic Rashba coupling on systems with negligible spin–orbit interaction, e.g. graphene of an appropriate substrate. Secondly, we discuss the interplay between spin–orbit and intrinsic Rashba interactions. This part is relevant to materials with significant spin–orbit coupling such as silicene and stanene.  相似文献   

2.
《Physics letters. A》2014,378(26-27):1888-1892
Using the transfer matrix method, we study the electron transport through a single-layer graphene superlattice with alternating layers of ferromagnetic and normal regions with Rashba spin–orbit coupling. We show that the transport properties of the system depend strongly on the superlattice parameters. As another result, Rashba spin–orbit coupling manifests to be of crucial importance in controlling the transmission probabilities and Giant Magneto Resistance (GMR).  相似文献   

3.
We have presented here the consequences of the non-uniform exchange field on the spin transport issues in spin chiral configuration of ferromagnetic graphene. Taking resort to the spin–orbit coupling (SOC) term and non-uniform exchange coupling term we are successful to express the expression of Hall conductivity in terms of the exchange field and SOC parameters through the Kubo formula approach. However, for a specific configuration of the exchange parameter we have evaluated the Berry curvature of the system. We also have paid attention to the study of SU(2) gauge theory of ferromagnetic graphene. The generation of anti damping spin–orbit torque in spin chiral magnetic graphene is also briefly discussed.  相似文献   

4.
We review recent work in the field of organic spintronics, focusing on our own contributions to this field. There are two principle magnetoresistance effects that occur in organic devices. (i) Organic magnetoresistance (OMAR), which occurs in nonmagnetic organic semiconductor devices. For example, in devices made from the prototypical small molecule Alq3 OMAR reaches values of 10% or more at room temperature. (ii) Organic spin‐valve effects that occur in devices that employ ferromagnetic electrodes for spin‐polarized current injection and detection. We undertake an analysis of these two types of magnetoresistance with the goal of identifying the dominant spin‐scattering mechanism. Analysis of OMAR reveals that hyperfine coupling is the dominant spin‐coupling mechanism. Spin–orbit coupling, on the other hand, is important only in organic semiconductor materials containing heavy atoms. We explore the reasons why spin–orbit coupling is relatively unimportant in hydrocarbon materials. Next, we present a theory for spin diffusion in disordered organic semiconductors based on hyperfine coupling, taking into account a combination of incoherent carrier hopping and coherent spin precession in the random hyperfine magnetic fields. We compare our findings with experimental values for the spin‐diffusion length. Finally, we demonstrate a criterion that allows the determination whether the organic spin‐valves operate in the tunneling or injection regimes. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
In this article we study the role of Rashba spin–orbit coupling and electron–phonon interaction on the electronic structure of zigzag graphene nanoribbon with different width. The total Hamiltonian of nanoribbon is written in the tight binding form and the electron–electron interaction is modeled in the Hubbard term. We used a unitary transformation to reach an effective Hamiltonian for nano ribbon in the presence of electron–phonon interaction. Our results show that small Rashba spin orbit coupling annihilates the anti-ferromagnetic phase in the zigzag edges of ribbon and the electron–phonon interaction yields small polaron formation in graphene nano ribbon. Furthermore, Rashba type spin–orbit coupling increases (decreases) the polaron formation energy for up (down) spin state.  相似文献   

6.
We briefly review the phenomenon of the spin-double refraction that originates at an interface separating a two-dimensional electron gas with Rashba spin–orbit coupling from a one without. We demonstrate how this phenomenon in semiconductor heterostructures can produce and control a spin-polarized current without ferromagnetic leads.  相似文献   

7.
Electronic transport properties of graphene‐based junctions are considered theoretically in the linear response regime and in terms of the effective continuous electronic model. The junctions under consideration consist of two parts; one part is magnetic, while the other one is non‐magnetic but exhibits strong Rashba spin–orbit coupling. Transport properties of such junctions depend on relative orientation of the magnetization, graphene plane, and direction of charge current. A relatively large anisotropic magnetoresistance, associated with a change in the relative orientation of the magnetization and electric current has been found. This magnetoresistance can be either positive or negative. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
李云 《中国物理 B》2011,20(5):57303-057303
We present theoretical calculations of spin transport in spin filtering magnetic tunnelling junctions based on the Landauer-Buttiker formalism and taking into account the spin-orbit coupling(SOC).It is shown that spin-flip scattering induced by SOC is stronger in parallel alignment of magnetization of the ferromegnet barrier(FB) and the ferromagnetic electrode than that in antiparallel case.The increase of negative tunnelling magnetoresistance with bias is in agreement with recent experimental observation.  相似文献   

9.
We report the electronic structure of Cd(TM)O2 (TM=Cr, Mn, Fe, Co, Ni) in the chalcopyrite structures. From this study we find that Cd(TM)O2 is a half-metallic ferromagnetic compound. From the energy consideration we find that Cd(TM)O2 is more stable in chalcopyrite structure rather than in rock salt structure. A careful analysis of the spin density reveals the ferromagnetic coupling between the p-d states and the cation dangling-bond p states, which is believed to be responsible for the stabilization of the ferromagnetic phase. The calculated heat of formation, bulk modulus and cohesive energy are reported.  相似文献   

10.
《Physics letters. A》2014,378(26-27):1854-1866
We investigate the spin-dependent thermoelectric effect of a Rashba molecular quantum dot coupled with both ferromagnetic leads and a phonon bath in the Kondo regime. A transport formula is derived to deal with the strong electron–electron and electron–phonon interaction with the spin–orbit coupling of arbitrary intensity simultaneously. The numerical results show that only strengthening the electron–phonon coupling can improve the charge thermopower, while even very small spin–orbit coupling can suppress both the thermocharge figure of merit and the thermospin one at the Kondo temperature greatly. It is also found that the electron–phonon coupling in conjunction with the spin–orbit coupling can rebuild Fermi liquid state in the Kondo regime.  相似文献   

11.
In the present work the dynamical behavior of π-electronic spin in graphene is investigated. The π-electron is under the influence of a normal uniform magnetic field and the Rashba spin–orbit coupling. Introducing a Casimir operator, we show that the governing Hamiltonian and, consequently, the time-evolution matrix is block-diagonal. We then proceed to calculate the temporal behavior of different spin components, when it is initially in-plane polarized. Our calculations show that the spin is dynamically polarized in a plane normal to the graphene sheet and follows the patterns of collapse-revivals. The dependence of amplitudes as well as the collapse-revivals’ periods on the external field and the Rashba spin–orbit coupling is also reported.  相似文献   

12.
We prove that in a two-dimensional homogeneous boson system with Rashba spin–orbit coupling, Bose–Einstein condensate with plane-wave order is unstable at finite temperature. The calculations are based on a nonlinear sigma model scheme. The density wave contributions to the thermal deletions are divergent in the infrared limit. The behavior of the divergence is different from that without spin–orbit coupling.  相似文献   

13.
We calculate the electronic band dispersion of graphene monolayer on a two-dimensional transition metal dichalcogenide substrate (GrTMD) around K and \(\mathbf{K}^{\prime }\) points by taking into account the interplay of the ferromagnetic impurities and the substrate-induced interactions. The latter are (strongly enhanced) intrinsic spin–orbit interaction (SOI), the extrinsic Rashba spin–orbit interaction (RSOI) and the one related to the transfer of the electronic charge from graphene to substrate. We introduce exchange field (M) in the Hamiltonian to take into account the deposition of magnetic impurities on the graphene surface. The cavalcade of the perturbations yield particle–hole symmetric band dispersion with an effective Zeeman field due to the interplay of the substrate-induced interactions with RSOI as the prime player. Our graphical analysis with extremely low-lying states strongly suggests the following: The GrTMDs, such as graphene on \(\hbox {WY}_{2}\), exhibit (direct) band-gap narrowing / widening (Moss–Burstein (MB) gap shift) including the increase in spin polarisation (P) at low temperature due to the increase in the exchange field (M) at the Dirac points. The polarisation is found to be electric field tunable as well. Finally, there is anticrossing of non-parabolic bands with opposite spins, the gap closing with same spins, etc. around the Dirac points. A direct electric field control of magnetism at the nanoscale is needed here. The magnetic multiferroics, like \(\hbox {BiFeO}_{3}\) (BFO), are useful for this purpose due to the coupling between the magnetic and electric order parameters.  相似文献   

14.
邓小清  孙琳  李春先 《物理学报》2016,65(6):68503-068503
基于密度泛函理论第一原理系统研究了界面铁掺杂锯齿(zigzag)形石墨烯纳米带的自旋输运性能, 首先考虑了宽度为4的锯齿(zigzag)形石墨烯纳米带, 构件了4个纳米器件模型, 对应于中心散射区的长度分别为N=4, 6, 8和10个石墨烯单胞的长度, 铁掺杂在中心区和电极的界面. 发现在铁磁(FM)态, 四个器件的β自旋的电流远大于α自旋的电流, 产生了自旋过滤现象; 而界面铁掺杂的反铁磁态模型, 两种电流自旋都很小, 无法产生自旋过滤现象; 进一步考虑电极的反自旋构型, 器件电流显示出明显的自旋过滤效应. 探讨了带宽分别为5和6的纳米器件的自旋输运性能, 中心散射区的长度为N=6个石墨烯单胞的长度, FM 态下器件两种自旋方向的电流值也存在较大的差异, β自旋的电流远大于α自旋电流. 这些结果表明: 界面铁掺杂能有效调控锯齿形石墨烯纳米带的自旋电子, 对于设计和发展高极化自旋过滤器件有重要意义.  相似文献   

15.
M. Afshar  M. Hemati 《Physics letters. A》2018,382(48):3476-3482
We have demonstrated electronic configurations and magnetic properties of single Co adatom on benzene (Bz) molecule in the framework of relativistic density functional theory. A sequence of fixed spin moment (FSM) calculations were carried out with and without Coulomb repulsion (U). We have investigated that varying the strength of Coulomb repulsion results to different equilibrium positions for the Co adatom on benzene molecule. It was shown that inclusion of the on-site Coulomb repulsion in the Co 3d orbitals affects significantly the geometry of Co–Bz complex. We also found two stable low-spin and high-spin multiplicities for the complex. The nature of the high-spin configuration was explained according to the Hubbard electron–electron correlation in 3d shell of the Co adatom. Our FSM results indicate that the high-spin state is a global minimum in the presence of Hubbard parameter U. The relativistic spin–orbit coupling and using orbital polarization correction induce considerable orbital magnetism in both low and high spin states of the Co–Bz complex. We have also calculated magnetic anisotropy energies for two spin states and we found out that an out-of-plane magnetic orientation of Co adatom is more favorable in the low spin state whereas the Coulomb repulsion (U = 2 eV and U = 4 eV) predicts an in-plane magnetic orientation for Co adatom. Our findings can be implicitly taken into account for the extended system of added single Co atom on graphene.  相似文献   

16.
《Physics letters. A》2014,378(38-39):2900-2905
We study theoretically the tunneling charge conductance in ferromagnet/spin-triplet superconductor junction with the spin–orbit coupling interface. It is shown the symmetry of the conductance about the relative angle between the magnetization in ferromagnet and the d-vector in superconductor is broken due to the presence of the interfacial Rashba spin–orbit coupling. We present the conductance for various cases of the angle. For each angle, the spin-active mechanism provided by the interface is investigated. The interface effects for different spin polarization in the ferromagnet is also considered.  相似文献   

17.
An intrinsic contribution to the spin Hall effect in two‐dimensional silicene is considered theoretically within the linear response theory and Green's function formalism. When an external voltage normal to the silicene plane is applied, the spin Hall conductivity is shown to reveal a transition from the spin Hall insulator phase at low bias to the conventional insulator phase at higher voltages. This transition resembles the recently reported phase transition in bilayer graphene. The spin–orbit interaction responsible for this transition in silicene is much stronger than in graphene, which should make the transition observable experimentally. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
The magnetic and electronic properties of TM (TM=Cr, Mn, and Fe) adatoms adsorption on Si(001) surface are studied by means of the first-principles method. For the adsorption of a single TM atom on Si(001), we obtain decreasing spin moments and increasing adsorption energies as TM varies from Cr to Fe. In the case of TM dimers adsorption, the calculated results show that the spin coupling changes from antiferromagnetic (AFM) to ferromagnetic (FM) as the 3d electrons increased. AFM coupling is found to be preferred for Cr, while FM coupling is energetically favorable for Mn and Fe. In the case of TM wires, we find that the FM state is energetically preferred for Mn and Fe atoms on the Si(001) surface, while for Cr wires, the up–down–up state for P–M–M site Cr atoms seems to be more energy favorable. We also find that the silicon surfaces become metallic for the adsorption of TM wires.  相似文献   

19.
We study spin transport in normal/ferromagnetic/normal/ferromagnetic.../normal graphene superlattices, which can be realized by putting a series of magnetic insulator bars on top of a graphene sheet. Owing to magnetic proximity effect, local exchange splittings will be induced in the graphene sheet, effectively forming a magnetic graphene superlattice. The spin polarization of tunneling conductance and the magneto resistance (MR) exhibit oscillatory behavior with the gate voltage. The superlattice structure leads to an enhanced spin polarization and MR ratio, making the magnetic graphene superlattice become very promising in spintronics applications.  相似文献   

20.
Metal-oxide interfaces play an important role in spintronics—a new area of microelectronics that exploits spin of electrons in addition to the traditional charge degree of freedom to enhance the performance of existing semiconductor devices. Magnetic tunnel junctions (MTJs) consisting of spin-polarized ferromagnetic electrodes sandwiching an insulating barrier are such promising candidates of spintronic devices. The paper reviews recent results of first-principle density-functional studies of the atomic and electronic structure of metal-oxide interfaces in Co/Al2O3/Co and Co/SrTiO3/Co MTJs. The most stable interface structures, O-terminated for fcc Co (111)/-alumina(0001) and TiO2-terminated with oxygens on top of Co atoms for fcc Co (001)/SrTiO3(001) were identified based on energetics of metal-oxide cohesion at the interface. The covalent character of bonding for both the Co/alumina and Co/SrTiO3 interface structures has been determined based on the pattern of electron distribution across the interface. The Al-terminated Co/alumina interface that corresponds to an under-oxidized MTJ exhibits a metallic character of bonding. The unusual charge transfer process coupled with exchange interactions of electrons in Co results in quenching of surface magnetism at the interface and substantial reduction of work of separation. The electronic structure of the O-terminated Co/Al2O3/Co MTJ exhibits negative spin polarization at the Fermi energy within the first few monolayers of alumina but it eventually becomes positive for distances beyond 10 Å. The Co/SrTiO3/Co MTJ shows an exchange coupling between the interface Co and Ti atoms mediated by oxygen, which results in an antiparallely aligned induced magnetic moment on Ti atoms. This may lead to a negative spin polarization of tunneling across the SrTiO3 barrier from the Co electrode. The results illustrate the important fact that spin-polarized tunneling in magnetic tunnel junctions is not determined entirely by bulk density of states of ferromagnet electrodes, but is also very sensitive to the nature of the insulating tunneling barrier, as well as the atomic structure and bonding at the ferromagnet/insulator interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号