首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
In this work atomic layer deposition of Al2O3 and TiO2 has been used to obtain dielectric stacks for passivation of silicon surfaces. Our experiments on n‐ and p‐type silicon wafers deposited by thin Al2O3/TiO2 stacks show that a considerably improved passivation is obtained compared to the Al2O3 single layer. For Al2O3 films thinner than 20 nm the emitter saturation current density decreases with increasing TiO2 thickness. Especially the passivation of ultrathin (~5 nm) Al2O3 is very effectively enhanced by TiO2 due to a decreased interface defect density as well as an increased fixed negative charge in the stacks. Hence, the thin Al2O3/TiO2 stacks developed in this work can be used as a passivation coating for Si‐based solar cells. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
张祥  刘邦武  夏洋  李超波  刘杰  沈泽南 《物理学报》2012,61(18):187303-187303
介绍了Al2O3的材料性质及其原子层沉积制备方法, 详细阐述了该材料的钝化机制(化学钝化和场效应钝化), 并从薄膜厚度、热稳定性及叠层钝化等角度阐释其优化方案. 概述了Al2O3钝化在晶体硅太阳电池中的应用, 主要包括钝化发射极及背面局部扩散电池和钝化发射极及背表面电池. 最后, 对Al2O3钝化工艺的未来研究方向和大规模的工业应用进行了展望.  相似文献   

3.
We investigate the effect of O3 and H2O oxidant pre‐pulse prior to Al2O3 atomic layer deposition for Si surface passivation. Interfacial oxide SiOx formed by the O3 pre‐pulse is more beneficial than that by H2O to a high level of surface passivation. The passivation of thinner H2O–Al2O3 films is more improved by this O3 pre‐pulse. O3 pre‐pulse for 10 nm H2O–Al2O3 reduces saturation current density in boron emitter to 18 fA cm–2 by a factor of 1.7. Capacitance–voltage measurements reveal this interfacial oxide plays a role of decreasing interface trap density without detrimental effect to negative charge density of Al2O3. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

4.
We studied the thermal stability of HfO2 on an InP structure when an Al2O3 interface passivation layer (PL) was introduced. In contrast to the thick (~4 nm) Al2O3‐PL, an almost complete disappearance of the thin (~1 nm) Al2O3‐PL was observed after a post‐deposition anneal at 600 °C. Based on various chemical and electrical analyses, this was attributed to the intermixing of the thin Al2O3‐PL with HfO2, which might have been accompanied by the out‐diffusion of a substantial amount of substrate elements. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Growth and interfacial properties of atomic layer deposited Al0.7Ti0.3O y on Ge have been investigated as a potential high-k gate dielectric for future Ge-based metal oxide semiconductor devices. A sandwich structure of Al2O3/TiO2 stack is proposed for Al2O3/TiO2 intermixing and high-k/Ge interfacial passivation. The film thicknesses and interface microstructure are characterized by spectroscopy ellipsometry and high-resolution transmission electron microscopy. X-ray photoelectron spectrometry is used to analyze the chemical composition and bonding states, and to reveal the band alignment of high-k/Ge heterojunctions. Metal-oxide-capacitors are formed by depositing aluminum electrodes to perform capacitance–voltage measurements for electrical characteristics. All evidences show a positive prospect of employing atomic layer deposited Al0.7Ti0.3O y as high-k gate dielectric for future Ge-based devices.  相似文献   

6.
Plasma-assisted atomic layer deposition (PA-ALD) is more suitable than thermal atomic layer deposition (ALD) for mass production because of its faster growth rate. However, controlling surface damage caused by plasma during the PA-ALD process is a key issue. In this study, the passivation characteristics of Al2O3 layers deposited by PA-ALD were investigated with various O2 plasma exposure times. The growth per cycle (GPC) during Al2O3 deposition was saturated at approximately 1.4?Å/cycle after an O2 plasma exposure time of 1.5?s, and a refractive index of Al2O3 in the range of 1.65–1.67 was obtained. As the O2 plasma exposure time increased in the Al2O3 deposition process, the passivation properties tended to deteriorate, and as the radio frequency (RF) power increased, the passivation uniformity and the thermal stability of the Al2O3 layer deteriorated. To study the Al2O3/Si interface characteristics, the capacitance-voltage (C-V) and the conductance-voltage (G-V) were measured using a mercury probe, and the fixed charge density (Qf) and the interface trap density (Dit) were then extracted. The Qf of the Al2O3 layer deposited on a Si wafer by PA-ALD was almost unaffected, but the Dit increased with O2 plasma exposure time. In conclusion, as the O2 plasma exposure time increased during Al2O3 layer deposition by PA-ALD, the Al2O3/Si interface characteristics deteriorated because of plasma surface damage.  相似文献   

7.
In recent years Al2O3 has received tremendous interest in the photovoltaic community for the application as surface passivation layer for crystalline silicon. Especially p‐type c‐Si surfaces are very effectively passivated by Al2O3, including p‐type emitters, due to the high fixed negative charge in the Al2O3 film. In this Letter we show that Al2O3 prepared by plasma‐assisted atomic layer deposition (ALD) can actually provide a good level of surface passivation for highly doped n‐type emitters in the range of 10–100 Ω/sq with implied‐Voc values up to 680 mV. For n‐type emitters in the range of 100–200 Ω/sq the implied‐Voc drops to a value of 600 mV for a 200 Ω/sq emitter, indicating a decreased level of surface passivation. For even lighter doped n‐type surfaces the passivation quality increases again to implied‐Voc values well above 700 mV. Hence, the results presented here indicate that within a certain doping range, highly doped n‐ and p‐type surfaces can be passivated simultaneously by Al2O3. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The origin behind crystalline silicon surface passivation by Al2O3 films is studied in detail by means of spatially‐resolved electron energy loss spectroscopy. The bonding configurations of Al and O are studied in as‐deposited and annealed Al2O3 films grown on c‐Si substrates by plasma‐assisted and thermal atomic layer deposition. The results confirm the presence of an interfacial SiO2‐like film and demonstrate changes in the ratio between tetrahedrally and octahedrally coordinated Al in the films after annealing. These observations reveal the underlying origin of c‐Si surface passivation by Al2O3. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
郑志威  霍宗亮  朱晨昕  许中广  刘璟  刘明 《中国物理 B》2011,20(10):108501-108501
In this paper, we investigate an Al2O3/HfSiO stack as the blocking layer of a metal-oxide-nitride-oxide-silicon-type (MONOS) memory capacitor. Compared with a memory capacitor with a single HfSiO layer as the blocking layer or an Al2O3/HfO2 stack as the blocking layer, the sample with the Al2O3/HfSiO stack as the blocking layer shows high program/erase (P/E) speed and good data retention characteristics. These improved performances can be explained by energy band engineering. The experimental results demonstrate that the memory device with an Al2O3/HfSiO stack as the blocking layer has great potential for further high-performance nonvolatile memory applications.  相似文献   

10.
This work demonstrates that the combination of a wet‐chemically grown SiO2 tunnel oxide with a highly‐doped microcrystalline silicon carbide layer grown by hot‐wire chemical vapor deposition yields an excellent surface passivation for phosphorous‐doped crystalline silicon (c‐Si) wafers. We find effective minority carrier lifetimes of well above 6 ms by introducing this stack. We investigated its c‐Si surface passivation mechanism in a systematic study combined with the comparison to a phosphorous‐doped polycrystalline‐Si (pc‐Si)/SiO2 stack. In both cases, field effect passivation by the n‐doping of either the µc‐SiC:H or the pc‐Si is effective. Hydrogen passivation during µc‐SiC:H growth plays an important role for the µc‐SiC:H/SiO2 combination, whereas phosphorous in‐diffusion into the SiO2 and the c‐Si is operative for the surface passivation via the Pc‐Si/SiO2 stack. The high transparency and conductivity of the µc‐SiC:H layer, a low thermal budget and number of processes needed to form the stack, and the excellent c‐Si surface passivation quality are advantageous features of µc‐SiC:H/SiO2 that can be beneficial for c‐Si solar cells. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

11.
The characteristics of Al2O3 film grown by atomic‐layer deposition as blocking layer with and without fluorine plasma treatment were investigated based on a capacitor structure of Al/Al2O3/TaON/SiO2/Si. The physical structure was studied by transmission electron microscopy, and the chemical composition of the blocking layer was analyzed by X‐ray photoelectron spectroscopy and secondary ion mass spectroscopy. Moreover, the surface roughness of the blocking layer was investigated by atomic force microscopy. Compared with a capacitor with Al2O3 blocking layer, the one with fluorinated Al2O3 displayed higher programming/erasing speeds, better endurance property and better charge retention characteristic because the fluorination could reduce excess oxygen and traps in the blocking layer, thus forming a larger barrier height at the interface between the charge‐trapping layer and the blocking layer. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The energy diagram of RuO2/Al‐doped TiO2/RuO2 structures was estimated from the capacitance–voltage and leakage current density–voltage curves. The Al‐doping profile in TiO2 film was varied by changing position of the atomic layer deposition cycle of Al2O3 during the atomic layer deposition of 9 nm‐thick TiO2 film. The interface between the TiO2 film and the RuO2 electrode containing Al‐doping layer showed a higher Schottky barrier by 0.1 eV compared with the opposite interface without the doping layer. The evolution of various leakage current profiles upon increasing the bias with opposite polarity could be well explained by the asymmetric Schottky barrier. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

13.
We measure surface recombination velocities (SRVs) below 10 cm/s on p‐type crystalline silicon wafers passivated by atomic–layer–deposited (ALD) aluminium oxide (Al2O3) films of thickness ≥10 nm. For films thinner than 10 nm the SRV increases with decreasing Al2O3 thickness. For ultrathin Al2O3 layers of 3.6 nm we still attain a SRV < 22 cm/s on 1.5 Ω cm p‐Si and an exceptionally low SRV of 1.8 cm/s on high‐resistivity (200 Ω cm) p‐Si. Ultrathin Al2O3 films are particularly relevant for the implementation into solar cells, as the deposition rate of the ALD process is extremely low compared to the frequently used plasma‐enhanced chemical vapour deposition of silicon nitride (SiNx). Our experiments on silicon wafers passivated with stacks composed of ultrathin Al2O3 and SiNx show that a substantially improved thermal stability during high‐temperature firing at 830 °C is obtained for the Al2O3/SiNx stacks compared to the single‐layer Al2O3 passivation. Al2O3/SiNx stacks are hence ideally suited for the implementation into industrial‐type silicon solar cells where the metal contacts are made by screen‐printing and high‐temperature firing of metal pastes. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
It is demonstrated that the application of an ultrathin aluminum oxide (Al2O3) capping film can improve the level of silicon surface passivation obtained by low‐temperature synthesized SiO2 profoundly. For such stacks, a very high level of surface passivation was achieved after annealing, with Seff < 2 cm/s for 3.5 Ω cm n‐type c‐Si. This can be attributed primarily to a low interface defect density (Dit < 1011 eV–1 cm–2). Consequently, the Al2O3 capping layer induced a high level of chemical passivation at the Si/SiO2 interface. Moreover, the stacks showed an exceptional stability during high‐temperature firing processes and therefore provide a low temperature (≤400 °C) alternative to thermally‐grown SiO2. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Decreasing the absorber layer thickness of thin‐film solar cells can be an effective solution for cost reduction of photovoltaic electricity generation. Unfortunately, this reduction leads to detrimental effects such as incomplete photon absorption and increased charge carrier recombination at the rear electrode. To tackle these losses in ultra‐thin 0.5 µm Cu(In,Ga)Se2 (CIGS) solar cells, we developed different passivation structures made of MgF2 and Al2O3 at the molybdenum–CIGS interface, leading to localized back contacts. The influence of the distance between those contacts on the cell performance was studied by varying the periodicity of the applied 1D patterns from 6 μm to 30 μm. Thus, an increase in performance was measured for microstructured layers with a periodicity of up to 12 µm. More precisely, a MgF2 layer yielded an increase in power conversion efficiency (PCE) of up to 9%rel compared to an unpassivated cell design, and a passivation layer comprising Al2O3 led to up to a 5%rel increase in PCE. The gains were primarily attributed to an increased reflectivity of the back contact, while the formation of a negative backside field in the case of Al2O3 might have contributed to this increase by preventing electrons from recombining at the backside interface. Our findings indicate a high lateral conductivity for holes inside the multicrystalline CIGS compound over few tens of micrometres, which allows an independent design of future back contacts and light‐trapping schemes.

False‐colour scanning electron microscopy cross‐section picture of a passivated solar cell, with the front contact layers coloured in green, the 0.5 µm CIGS absorber in dark red, the MgF2 passivation layer in blue, and the Mo back contact in grey.  相似文献   


16.
Temperature-dependent photoluminescence (PL) from Si nanodots with Al2O3 surface passivation layers was studied. The Si nanodots were grown by low pressure chemical vapor deposition and the Al2O3 thin films were prepared by atomic layer deposition (ALD), respectively. The BOE (Buffer-Oxide-Etch) treatment resulted in the damaged surface of Si nanodots and thus caused dramatic reduction in the PL intensity. Significant enhancement of the PL intensity from Si nanodots after the deposition of Al2O3 thin films was observed over a wide temperature range, indicating the remarkable surface passivation effect to suppress the non-radiative recombination at the surface of Si nanodots. The results demonstrated that the Al2O3 surface passivation layers grown by ALD are effectually applicable to nanostructured silicon devices.  相似文献   

17.
The paper presents the possibility of using Al2O3 antireflection coatings deposited by atomic layer deposition ALD. The ALD method is based on alternate pulsing of the precursor gases and vapors onto the substrate surface and then chemisorption or surface reaction of the precursors. The reactor is purged with an inert gas between the precursor pulses. The Al2O3 thin film in structure of the finished solar cells can play the role of both antireflection and passivation layer which will simplify the process. For this research 50×50 mm monocrystalline silicon solar cells with one bus bar have been used. The metallic contacts were prepared by screen printing method and Al2O3 antireflection coating by ALD method. Results and their analysis allow to conclude that the Al2O3 antireflection coating deposited by ALD has a significant impact on the optoelectronic properties of the silicon solar cell. For about 80 nm of Al2O3 the best results were obtained in the wavelength range of 400 to 800 nm reducing the reflection to less than 1%. The difference in the solar cells efficiency between with and without antireflection coating was 5.28%. The LBIC scan measurements may indicate a positive influence of the thin film Al2O3 on the bulk passivation of the silicon.  相似文献   

18.
TiO2 and Al‐doped TiO2 (ATO) films were grown on Ir substrates by atomic layer deposition using O3 as the oxygen source. With increasing O3 feeding time, the crystalline structure of the TiO2 films was transformed from anatase to rutile. Above an O3 feeding time of 35 s, the films crystallized as only rutile due to the formation of IrO2 layer at the interface. The TiO2 and ATO films showed higher dielectric constants of 78 and 51, respectively. The films on Ir showed superior leakage properties compared to the films on Ru due to the high work‐function of Ir. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Al2O3/TiO2 bi-layer films on aluminium substrates have been obtained by combining anodising and TiO2 sol-gel deposition. The reflectivity enhancing properties of these Al2O3/TiO2 bi-layer films have been studied in relation to the refractive index and thickness of the Al2O3 and TiO2 single-layers. It is shown that a significant improvement of reflectivity can be achieved by a proper optimisation of the bi-layer elaboration parameters.  相似文献   

20.
Binary Al2O3/SiO2-coated rutile TiO2 composites were prepared by a liquid-phase deposition method starting from Na2SiO3·9H2O and NaAlO2. The chemical structure and morphology of binary Al2O3/SiO2 coating layers were investigated by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, TG-DSC, Zeta potential, powder X-ray diffraction, and transmission electron microscopy techniques. Binary Al2O3/SiO2 coating layers both in amorphous phase were formed at TiO2 surfaces. The silica coating layers were anchored at TiO2 surfaces via Si-O-Ti bonds and the alumina coating layers were probably anchored at the SiO2-coated TiO2 surfaces via Al-O-Si bonds. The formation of continuous and dense binary Al2O3/SiO2 coating layers depended on the pH value of reaction solution and the alumina loading. The binary Al2O3/SiO2-coated TiO2 composites had a high dispersibility in water. The whiteness and brightness of the binary Al2O3/SiO2-coated TiO2 composites were higher than those of the naked rutile TiO2 and the SiO2-coated TiO2 samples. The relative light scattering index was found to depend on the composition of coating layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号