首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A modified interaction potential (MIPM) model (including the covalency effect) has been developed and applied for the first time to investigate the high-pressure structural phase transition of scandium pnictides (ScAs and ScSb). Phase transition pressures are associated with a sudden collapse in volume indicating the occurrence of first order phase transition. The phase transition pressures and associated volume collapses obtained from present potential model show a generally better agreement with available experimental data than others. The elastic constants and their pressure derivatives are also reported. Moreover, the thermo physical properties have also been obtained successfully. Our results are in good agreement with available experimental and theoretical data.  相似文献   

2.
In this article, we have investigated the high-pressure structural phase transition of alkaline earth oxides using the three-body potential (TBP) model. Phase transition pressures are associated with elastic constants. An effective inter-ionic interaction potential (TBP) with long-range Coulomb interactions and the Hafemeister–Flygare type short-range overlap repulsion and the vdWl interaction is developed. The present calculations have revealed reasonably good agreement with the available experimental data on structural transition (B1–B2 structure). The phase transition pressures Pt of MgO, CaO, SrO, and BaO occur at 220, 45, 40, and 100?GPa, respectively. Further, the variations of the second-order elastic constants with pressure have followed a systematic trend, which are almost identical to those exhibited by the observed data measured for other semiconducting compounds with rocksalt (B1)-type crystal structure. It is found that TBP promises that we would be able to predict phase transition pressure and elastic constants for other chalcogenides as well. The results may be useful for geophysical study.  相似文献   

3.
Structural stability of TiO and TiN under high pressure   总被引:1,自引:0,他引:1  
The high pressure phase transition and elastic behavior of Transition Metal Compounds (TiO and TiN) which crystallize in NaCl-structure have been investigated using the three body potential model (TBPM) approach. These interactions arise due to the electron-shell deformation of the overlapping ions in crystals. The TBP model consists of a long range Coulomb, three body interactions, and the short-range overlap repulsive forces operative up to the second neighboring ions. The authors of this paper estimated the values of the phase transition pressures, associated volume collapses, and elastic constants, all of which were found to be closer to available experimental data than other calculations. Thus, the TBPM approach promises to predict the phase transition pressure and pressure variations of elastic constants of Transition Metal compounds.   相似文献   

4.
In this article, we have investigated the high-pressure structural phase transition of erbium pnictides (ErX; X?=?N, P and As). An extended interaction potential model has been developed (including the zero-point energy effect in three-body interaction potential model). Phase transition pressures are associated with a sudden collapse in volume. The phase transition pressures and associated volume collapses have been predicted successfully. The elastic constants, their combinations and pressure derivatives are also reported. The pressure behaviour of elastic constants, bulk modulus and shear modulus have been presented and discussed. Moreover, the thermophysical properties such as molecular force constant (f), infrared absorption frequency (υ 0), Debye temperature (θ D) and Grunneisen parameter (γ) have also been predicted.  相似文献   

5.
An improved interaction potential model (IIPM) has been formulated to theoretically predict the pressure induced phase transition, elastic properties and thermophysical properties of thorium monopnictides (ThX; X = N, P, As and Sb). The phase transition pressures and volume drop obtained from this model show a better agreement with the available experimental than theoretical results. We have achieved elastic moduli, anisotropy factor, Poisson's ratio, Kleinman parameter, shear and stiffness constants on the basis of the calculated elastic constants. To know the anharmonic properties, we have also computed the third-order elastic constants, first-order pressure derivatives of second-order elastic constants and thermophysical quantities. Our results are in reasonable agreement with available measured and others reported data which supports the validity of model.  相似文献   

6.
《Current Applied Physics》2014,14(3):496-507
The structural high pressure and temperature investigation of narrow-gap semiconductors (lead chalcogenides) has been performed in the present article. A realistic approach for room temperature and high temperature study of narrow-gap semiconductors has been used. It is examined that the present compounds are more stable in NaCl-phase and they transform to CsCl-phase at high pressure. In the present article, the phase transition pressures and volume collapses of lead chalcogenides have been investigated at room and high temperatures. Phase transition pressures have been reported at high temperature range from 0 to 1200 K. Elastic and anharmonic constants have also been reported at room temperature. A structural study of the narrow-gap semiconductors have been carried out using the realistic model including temperature effect. The temperature and pressure behaviour of elastic constants for the present compounds have also been discussed. Furthermore, various mechanical and thermo dynamical properties like modulus of elasticity, Debye temperatures etc. are also presented.  相似文献   

7.
The phase transition of ScSb and YSb from the NaCl-type (B1) structure to the CsCl-type (B2) structure is investigated by the ab initio plane-wave pseudopotential density functional theory method. It is found that the pressures for transition from the B1 structure to the B2 structure obtained from the equal enthalpies are 38.3 and 32.1 GPa for ScSb and YSb, respectively. From the variations of elastic constants with pressure, we find that the B1 phase of ScSb and YSb compounds are unstable when applied pressures are larger than 46.3 and 64.2 GPa, respectively. Moreover, the detailed volume changes during phase transition are analyzed.  相似文献   

8.
The high pressure phase transition and elastic behavior of rare earth monoselenides (CeSe, EuSe and LaSe) which crystallize in a NaCl-structure have been investigated using the three body interaction potential (TBIP) approach. These interactions arise due to the electronshell deformation of the overlapping ions in crystals. The TBP model consists of a long range Coulomb, three body interactions and the short range overlap repulsive forces operative up to the second neighboring ions. The authors of this paper estimated the values of the phase transition pressure and the associated volume collapse to be closer than other calculations. Thus, the TBIP approach also promises to predict the phase transition pressure and pressure variations of elastic constants of lanthanide compounds.   相似文献   

9.
10.
We have predicted the phase transition pressures and corresponding relative volume changes of EuO and EuS having NaCl-type structure under high pressure using three-body interaction potential (TBIP) approach. In addition, the conditions for relative stability in terms of modified Born criterion has been checked. Our calculated results of phase transitions, volume collapses and elastic behaviour of these compounds are found to be close to the experimental results. This shows that the inclusion of three-body interaction effects makes the present model suitable for high pressure studies.   相似文献   

11.
We have investigated the pressure-induced phase transition of InX (X = P, As, Sb) from Zinc-Blende (ZB) to NaCl structure by using realistic interaction potential model involving the effect of temperature. This model consists of Coulomb interaction, three-body interaction and short-range overlap repulsive interaction upto the second nearest neighbor involving temperature. Phase-transition pressure is associated with a sudden collapse in volume, showing the incidence of first-order phase transition. The phase-transition pressure is associated with volume collapses, and the elastic constants obtained from the present model indicate good agreement with the available experimental and theoretical data.  相似文献   

12.
The structural, electronic, mechanical and superconducting properties of tungsten carbide (WC) and tungsten nitride (WN) are investigated using first principles calculations based on density functional theory (DFT). The computed ground state properties, such as equilibrium lattice constant and cell volume, are in good agreement with the available experimental data. A pressure induced structural phase transition is observed in both tungsten carbide and nitride, from a tungsten carbide phase (WC) to a zinc blende phase (ZB), and from a zinc blende phase (ZB) to a wurtzite phase (WZ). The electronic structure reveals that these materials are metallic at ambient conditions. The calculated elastic constants obey the Born-Huang criteria, suggesting that they are mechanically stable at normal and high pressure. Also, the superconducting transition temperature is estimated for the WC and WN in stable structures at atmospheric pressure.  相似文献   

13.
We have predicted high pressure structural behavior and elastic properties of alkaline earth tellurides (AETe; AE = Ca, Sr, Ba) by using two body interionic potential approach with modified ionic charge (Z m e). This method has been found quite satisfactory in case of the rare earth compounds. The equation of state curve, structural phase transition pressure from NaCl (B1) to CsCl (B2) phase and associated volume collapse at transition pressure of alkaline earth tellurides (AETe) obtained from this approach, so have been compared with experimentally measured data reveal good agreement. We have also investigated bulk modulus, second and third order elastic constants and pressure derivatives of second order elastic constants at ambient pressure which shows predominantly ionic nature of these compounds. First time, we have calculated the Poisson ratio, Young and Shear modulus of these compounds.   相似文献   

14.
王金荣  朱俊  郝彦军  姬广富  向钢  邹洋春 《物理学报》2014,63(18):186401-186401
采用密度泛函理论中的赝势平面波方法系统地研究了高压下RhB的结构相变、弹性性质、电子结构和硬度.分析表明,RhB在25.3 GPa时从anti-NiAs结构相变到FeB结构,这两种结构的弹性常数、体弹模量、剪切模量、杨氏模量和弹性各向异性因子的外压力效应明显.电子态密度的计算结果显示,这两种结构是金属性的,且费米能级附近的峰随着压强的增大向两侧移动,赝能隙变宽,轨道杂化增强,共价性增强,非局域化更加明显.此外,硬度计算结果显示,anti-NiAs-RhB的金属性比较弱,有着较高的硬度,属于硬质材料.  相似文献   

15.
The pressure induced phase-transition, elastic and thermophysical properties of Ca-chalcogenides have been investigated by means of many body potential. The modified charge transfer potential consists of long-range Coulomb and charge-transfer interactions modified by covalency and short-range overlap repulsion extended up to second neighbours and zero-point energy effects. Another charge-transfer model excludes covalency and zero-point energy effects. These chalcogenides undergo first-order phase-transition at P T = 39.23, 36.30 and 31.20 GPa and their equation of state show volume collapse of 10.12, 7.61 and 4.55% for CaS, CaSe and CaTe, respectively, which are in good agreement with the experiments. The elastic and thermophysical properties of these compounds have also been computed at normal and high pressures. Both the models are capable of explaining the Cauchy-discrepancy (C12 ≠ C44), elastic, phase-transition and thermophysical properties successfully.  相似文献   

16.
The structural and electronic properties of XAs (X = Al, Ga, In) under pressure have been investigated using ab-initio pseudo-potential approach within local density approximation in B3→B1→B2 phases. The values of phase transition pressures show reasonably good agreement with the experimental data and better than others. The B1→B2 phase transition in InAs is not seen. The volume collapse computed from equation of state (EOS) is found to be in good agreement with the experimental values. Under ambient conditions, the energy of B3 phase is lowest as compared to other phases, while at high pressures beyond B1→B2 phase transition, the energy of B2 phase is found to be lower than that of B1 phase showing correct stability of the phases. There is relatively smaller enthalpy associated with B3→B1 transition as compared to B3→B2 transition. The electronic structures have also been computed at different pressures. We have also reported the effect of pressure on energy gap and valence band width.  相似文献   

17.
We have predicted the phase transition pressures and corresponding relative volume changes of two neodymium monopnictides (NdAs and NdSb) having NaCl-type structure at ambient conditions, using an improved interaction potential model (IIPM) approach. Both the compounds have been found to undergo from their initial NaCl(B1) phase to a body centered tetragonal (BCT) phase at high pressure. Our calculated results of phase transitions, volume collapses and elastic behavior of these compounds are found to be close to the experimental results. This shows that the inclusion of the three-body interaction and polarizability effect makes the present model suitable for high pressure studies.  相似文献   

18.
刘丽  韦建军  安辛友  王雪敏  刘会娜  吴卫东 《中国物理 B》2011,20(10):106201-106201
The phase transition of gallium phosphide (GaP) from zinc-blende (ZB) to a rocksalt (RS) structure is investigated by the plane-wave pseudopotential density functional theory (DFT). Lattice constant a0, elastic constants cij, bulk modulus B0 and the pressure derivative of bulk modulus B0' are calculated. The results are in good agreement with numerous experimental and theoretical data. From the usual condition of equal enthalpies, the phase transition from the ZB to the RS structure occurs at 21.9 GPa, which is close to the experimental value of 22.0 GPa. The elastic properties of GaP with the ZB structure in a pressure range from 0 GPa to 21.9 GPa and those of the RS structure in a pressure range of pressures from 21.9 GPa to 40 GPa are obtained. According to the quasi-harmonic Debye model, in which the phononic effects are considered, the normalized volume V/V0, the Debye temperature θ, the heat capacity Cv and the thermal expansion coefficient α are also discussed in a pressure range from 0 GPa to 40 GPa and a temperature range from 0 K to 1500 K.  相似文献   

19.
A pressure induced structural phase transition from NaCl-type (B1) to CsCl-type (B2) structure has been predicted in transition metal carbides, namely TiC, ZrC, NbC, HfC, and TaC by using an interionic potential theory with modified ionic charge (Zm ), which includes Coulomb screening effect due to d-electron. The phase transition pressure (PT ) relies on large volume discontinuity in pressure–volume relationship, and identifies the structural phase transition from B1 phase to B2 phase. The variation of second-order elastic constants with pressure follows a systematic trend identical to that observed in other compounds of NaCl-type structure. The Born criterion for stability is found to be valid in transition metal carbides.  相似文献   

20.
The structural and elastic properties of cerium chalcogenides (CeZ, Z = S, Se, Te) under high pressure have been investigated by using the potential model considered up to third nearest neighbor interaction. The computed values of B1-B2 phase transition pressure, equation of state (compression curve), bulk modulus, its first order pressure derivative and elastic constants in the case of cerium chalcogenides agree well with the experimental results. The present study shows the anomalous behavior of cerium chalcogenides in comparison to the alkaline earth chalcogenides, due to the presence of Kondo effect and reentrant valence behavior of Ce in cerium chalcogenides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号