首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The temperature distribution in unsteady laminar flow of a viscous incompressible fluid in a flat channel is investigated, when the pressure gradient is an arbitrary function of time. Two techniques are presented (i) explicit finite difference scheme, and (ii) Chebyshev polynomial solution. Using both the techniques, several cases of pressure gradient are considered, with special attention paid to the linearly varying case.  相似文献   

2.
Flow driven by an externally imposed pressure gradient in a vertical porous channel is analysed. The combined effects of viscous dissipation and thermal buoyancy are taken into account. These effects yield a basic mixed convection regime given by dual flow branches. Duality of flow emerges for a given vertical pressure gradient. In the case of downward pressure gradient, i.e. upward mean flow, dual solutions coincide when the intensity of the downward pressure gradient attains a maximum. Above this maximum no stationary and parallel flow solution exists. A nonlinear stability analysis of the dual solution branches is carried out limited to parallel flow perturbations. This analysis is sufficient to prove that one of the dual solution branches is unstable. The evolution in time of a solution in the unstable branch is also studied by a direct numerical solution of the governing equation.  相似文献   

3.
A high-Reynolds steady-state viscous incompressible fluid flow is investigated in the neighborhood of a small three-dimensional irregularity located on the smooth surface of a body and oriented almost along the skin-friction lines. The regime in which quasi-two-dimensional flow with a given pressure gradient is realized on the irregularity scale is studied in detail. The numerical solution of the corresponding boundary value problem for the boundary layer equations is obtained. It is shown that, as distinct from the plane case, this solution is unique.  相似文献   

4.
A time-varying flow through a porous medium of a dusty viscous incompressible Bingham fluid in a circular pipe is studied. A constant pressure gradient is applied in the axial direction, whereas the particle phase is assumed to behave as a viscous fluid. The effect of the medium porosity, the non-Newtonian fluid characteristics, and the particle phase viscosity on the transient behavior of the velocity, volumetric flow rates, and skin friction coefficients of both the fluid and particle phases is investigated. A numerical solution is obtained for the governing nonlinear momentum equations by using the method of finite differences.  相似文献   

5.
Consider an incompressible fluid, filtrating through a saturated cylindrical porous layer with rectangular cross-section. A steady pressure gradient, parallel to the axis of the layer, drives a one-directional stationary non recirculating flow when the Darcy law has to include inertial and viscous corrections. This is the case, for instance, when the porosity of the medium or the seeping flow rate are not very small. The resulting nonlinear problem belongs to a class of equations which was proved to have positive solutions. It also satisfies a comparison principle from which approximations from above and from below are derived for the steady flow. The estimate from above is the flat profile which solves the Darcy-Forchheimer equation, which does not take account of viscous effects, and the approximation is excellent when the modified Darcy number is small, under the additional condition that the Forchheimer coefficient be small also. The flow still solves the problem when gradient forces, orthogonal to the axis of the layer, are also present.  相似文献   

6.
An approximate solution is obtained to the problem of inertialess periodic flow of fluid with a variable structure in a pipe of circular cross section. A study is made of the effect of the parameters which define the kinetics of the variations in the structure and the fluctuations in the pressure gradient on the effective viscosity and the other mean hydrodynamic characteristics. A comparison is made between the solutions to the problems of the flow of a thixotropic and a nonlinearly viscous fluid. The results are discussed in connection with their application to the circulation of the blood.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 3–9, January–February, 1987.  相似文献   

7.
Summary In this paper we have studied the problem of the unsteady flow of an electrically conducting incompressible viscous fluid through a circular pipe under the influence of a uniform applied transverse magnetic field when the walls are non-conducting. It has been assumed that the velocity vanishes on the non-conducting walls and initially the fluid is at rest. The velocity field and the induced magnetic field are calculated by an iteration procedure and have been found up to second order terms inM (Hartmann number) which is taken to be small. We have also neglected the term involving (= 4/) the self inductance of the fluid, which is valid for small values ofM.Since the pressure gradient is not necessarily a constant in unsteady flow, we have assumed it to be an arbitrary function of time. A particular case when the pressure gradient is an exponential function of time has also been investigated in detail. For a constant pressure gradient the curves for the velocity field and the induced magnetic field have been drawn (at different values of Hartmann number and time). It has been found that for small values of time the fluid is accelerated near the centre in contrast to the case of a non-conducting fluid.  相似文献   

8.
The problem of modeling a viscous fluid flow over the surface of a plate is considered when the pressure changes along the longitudinal coordinate according to a linear law. The corresponding boundary conditions are formulated for this problem. The Navier-Stokes equations are solved exactly in the problem of flow past the plate for the case of fluid outflow and a longitudinal pressure drop. Several formulas to determine the velocity profile are derived. The limiting cases are analyzed to study the consistency of various models. The corresponding pressure conditions are proposed for the case when the Navier-Stokes system has a known exact solution.  相似文献   

9.
The problem of steady viscous flow of an incompressible fluid over a flat deformable sheet in a porous medium, when the sheet is stretched in its own plane is revisited. An exact solution is recovered for the two-dimensional case and a totally analytic approximate solution is developed for the axisymmetric case. Stretching rate of two-dimensional case is assumed as double the stretching rate of axisymmetric case. The analytical expressions of residual errors, horizontal, vertical velocity distributions, stream lines, vorticity lines, pressure distributions have been obtained and plotted. The values of skin friction, entrainment velocity, boundary layer thickness, momentum thickness and energy thickness have been tabulated. For the first time, two-dimensional and axisymmetric cases are compared by means of a unified scale.  相似文献   

10.
This paper touches upon an initial-boundary-value problem that describes the unidirectional heat-gravitational motion of fluid in a plane channel in the case of solid immobile upper and lower walls with temperature distribution thereon and in the case of a heat-insulated upper wall. The motion is caused by a joint effect of the longitudinal temperature gradient and given nonstationary flow rate. The initial-boundary-value problem is inverse relative to the pressure gradient along the channel. An exact stationary solution is obtained. A solution of the nonstationary problems in Laplace images is determined, and the results of numerical calculations are presented.  相似文献   

11.
I. L. Logov 《Fluid Dynamics》1983,18(6):978-983
A study is made of the development of the flow of a viscous incompressible fluid from the state of rest in a circular cylindrical tube with constant pressure gradient. The tangential frictional stress at an arbitrary point of the flow is found as a function of the pressure gradient and the ratio of the values, averaged over the flow, of the accelerations corresponding to the considered time and the initial time. An analysis is made of the exact solution of the linear equation [1], which shows that the development of the drag forces in the case of viscous flow is determined by a characteristic time which depends on the kinematic viscosity and the tube radius. The value of the hydraulic friction drag coefficient for the unsteady flow is determined more accurately by introducing a correction that takes into account the velocity profile of the flow. The equations of motion are analyzed, and six different cases of development of the flow are described for the characteristic values of the dimensionless numbers. These cases determine the methods of calculation of one-dimensional problems. This question has not been fully clarified in earlier work [2, 3].  相似文献   

12.
An approximate solution for the laminar flow of an incompressible viscous fluid in the entrance region of a converging channel is obtained. The radial velocity distribution at the entrance of the channel is taken to be a symmetric but otherwise arbitrary function of the angular position. Expressions for the velocity components and pressure are given. The case of the uniformly distributed entrance velocity is considered as an example.  相似文献   

13.
考虑二次梯度项及动边界的双重介质低渗透油藏流动分析   总被引:4,自引:0,他引:4  
王梅英  同登科 《力学季刊》2007,28(3):448-454
在传统试井模型的非线性偏微分方程中根据弱可压缩流体的假设,忽略了二次梯度项,对于低渗透油藏这种方法是有疑问的.低渗透问题一个显著的特点就是流体的流动边界随着时间不断向外扩展.为了更好地研究双重介质低渗透油藏中流体的流动问题,考虑了二次梯度项及活动边界的影响,同时考虑了低渗透油藏的非达西渗流特征,建立了双重介质低渗透油藏流动模型.采用Douglas-Jones预估-校正差分方法获得了无限大地层定产量生产时模型的数值解,分别讨论了不同参数变化时压力的变化规律及活动边界随时间的传播规律,还分析了考虑和忽略二次梯度项影响时模型数值解之间的差异随时间的变化规律,做出了典型压力曲线图版,这些结果可用于实际试井分析.  相似文献   

14.
The flow problem of an elastico-viscous fluid in a straight circular pipe under the influence of a fluctuating pressure gradient is considered. Adopting a simple, generalized Maxwell model, it is shown that the percentage increase in the mean flow rate rises with increasing frequency of fluctuation. The value of the mean pressure gradient at which the flow rate enhancement attains its maximum value is determined entirely by inelastic calculations.  相似文献   

15.
The stability of thin viscous sheets has been studied so far in the special case where the base flow possesses a direction of invariance: the linear stability is then governed by an ordinary differential equation. We propose a mathematical formulation and a numerical method of solution that are applicable to the linear stability analysis of viscous sheets possessing no particular symmetry. The linear stability problem is formulated as a non-Hermitian eigenvalue problem in a 2D domain and is solved numerically using the finite-element method. Specifically, we consider the case of a viscous sheet in an open flow, which falls in a bath of fluid; the sheet is mildly stretched by gravity and the flow can become unstable by ‘curtain’ modes. The growth rates of these modes are calculated as a function of the fluid parameters and of the geometry, and a phase diagram is obtained. A transition is reported between a buckling mode (static bifurcation) and an oscillatory mode (Hopf bifurcation). The effect of surface tension is discussed.  相似文献   

16.
Summary The flow of a non-Newtonian incompressible liquid in a straight pipe of circular cross-section under the influence of a periodic pressure gradient is investigated; the viscous and elastic properties of the liquid are defined in terms of a spectrum of relaxation times. Such a flow is of interest to the experimentalist, because the flow could be readily attained and controlled in practice. A solution is obtained which determines the variation in the mean-square velocity over the section of the pipe. In the numerical illustrations given, it is shown that the general nature of the flow is similar to that of a purely viscous liquid of constant viscosity, a high peak of average velocity occurring near the wall of the pipe. However, it is shown that elasticity of the type considered could strongly affect the value and position of this peak of the average velocity.  相似文献   

17.
The problem investigated relates the plane unsteady flow of a viscous incompressible fluid in a narrow channel one of whose walls is free and acted upon by a given load, while the other is rigidly fixed. The fluid enters the channel through a porous insert in the stationary wall. A model of the flow of a thin film of viscous incompressible fluid and Darcy's law for flow in a porous medium are used to find the distribution of fluid pressure and velocity in the channel and the porous insert in the two-dimensional formulation for fairly general boundary conditions in the case where the length of the porous insert exceeds the length of the free wall. In the particular case where the length of the porous insert is equal to the length of the free wall an exact stationary solution of the problem is obtained for a given value of the channel height. The stability of the equilibrium position of the free wall supported on a hydrodynamic fluid film is examined.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 16–24, January–February, 1986.  相似文献   

18.
The problem of hydraulic fracture formation in a porous medium is investigated in the approximation of small fracture opening and inertialess incompressible Newtonian fluid fracture flow when the seepage through the fracture walls into the surrounding reservoir is asymptotically small or large. It is shown that the system of equations describing the propagation of the fracture has self-similar solutions of power-law or exponential form only. A family of self-similar solutions is constructed in order to determine the evolution of the fracture width and length, the fluid velocity in the fracture, and the length of fluid penetration into the porous medium when either the fluid flow rate or the pressure as a power-law or exponential function of time is specified at the fracture entrance. In the case of finite fluid penetration into the soil the system of equations has only a power-law self-similar solution, for example, when the fluid flow rate is specified at the fracture entrance as a quadratic function of time. The solutions of the self-similar equations are found numerically for one of the seepage regimes.  相似文献   

19.
Summary The flow of an incompressible viscous fluid due to a periodic pressure gradient through the annular space between two porous concentric circular cylinders with uniform injection into the outer cylinder and uniform suction into the inner cylinder has been considered. The expressions for the pressure and velocity are found. In view of the presence of the Bessel function in the axial component of velocity, we have discussed the two special cases of very small and very large oscillations. An approximate expression for the temperature, including viscous dissipation, when the oscillations are small is also found.  相似文献   

20.
An exact solution for laminar two-phase eccentric core-annular flows (CAF) in inclined pipes is derived. This solution complements the exact solutions that were obtained for inclined stratified flows with curved interfaces as to provide a set of solutions for two-phase laminar separated flows. A unified set of three dimensionless parameters for separated flows is defined and used to explore the effects of the system parameters and separated flow configurations on the velocity profiles and the resulting holdup, pressure gradient and pumping power requirement in horizontal and inclined concurrent and countercurrent flows. It is shown that similarly to stratified flows, also in CAF multiple solutions for the holdup and the associated flow characteristics can be obtained in inclined flows. The boundaries of the multiple solution regions are mapped and the effect of the core eccentricity and system parameters boundaries are demonstrated and discussed.The benefits of adding a lubricating phase for transportation of a viscous fluid in inclined CAFs is investigated. An adverse effect of the upward pipe inclination on the power savings in all of the separate flow configurations is demonstrated. Independently of the density of the lubricant, namely, whether it is lighter or heavier than the viscous fluid, the effect of hydrostatic pressure gradient always hinders the possibility of reducing the pumping requirement for transporting the viscous phase. However, surprisingly, a heavier lubricant is preferable form the view point of power saving. The implications of turbulent flow of the lubricating phase and the susceptibility to Ledinegg instability on the potential power savings are also considered and discussed. The application of the model for the analysis of experimental data of the holdup and pressure drop obtained in horizontal and inclined CAF is also demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号