首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
In this paper, we construct 23 new 3 HMOLS of type hn. We also investigate the existence of 3 HMOLS of type 2n31 and show that the necessary condition n 6 is sufficient for such designs to exist except possibly for 18 values of n, of which n = 31 is the largest. As an application, some improvements for the existence of perfect Mendelsohn designs with block size five are also mentioned.  相似文献   

2.
Let A be an n × n matrix with non-negative entries and no entry in (0, 1). We prove that there exist integers r, s with 0 r s 2n such that Ar As. We prove that 2n cannot be replaced with e√n log n. We also give an application to the theory of formal languages.  相似文献   

3.
We study open polynomial maps from n to p. For n = p we give a complete characterization, and for p = 2, n ≥ 3 we obtain some partial information.  相似文献   

4.
A theorem of Lagrange says that every natural number is the sum of 4 squares. M. Newman proved that every integral n by n matrix is the sum of 8 (-1)n squares when n is at least 2. He asked to generalize this to the rings of integers of algebraic number fields. We show that an n by n matrix over a a commutative R with 1 is the sum of squares if and only if its trace reduced modulo 2Ris a square in the ring R/2R. It this is the case (and n is at least 2), then the matrix is the sum of 6 squares (5 squares would do when n is even). Moreover, we obtain a similar result for an arbitrary ring R with 1. Answering another question of M. Newman, we show that every integral n by n matrix is the sum of ten k-th powers for all sufficiently large n. (depending on k).  相似文献   

5.
It is known that for sufficiently large n and m and any r the binomial coefficient (nm) which is close to the middle coefficient is divisible by pr where p is a ‘large’ prime. We prove the exact divisibility of (nm) by pr for p> c(n). The lower bound is essentially the best possible. We also prove some other results on divisibility of binomial coefficients.  相似文献   

6.
S. Zhang  L. Zhu   《Discrete Mathematics》2003,260(1-3):307-313
It has been shown by Lei, in his recent paper, that there exists a large set of Kirkman triple systems of order uv (LKTS(uv)) if there exist an LKTS(v), a TKTS(v) and an LR(u), where a TKTS(v) is a transitive Kirkman triple system of order v, and an LR(u) is a new kind of design introduced by Lei. In this paper, we improve this product construction by removing the condition “there exists a TKTS(v)”. Our main idea is to use transitive resolvable idempotent symmetric quasigroups instead of TKTS. As an application, we can combine the known results on LKTS and LR-designs to obtain the existence of an LKTS(3nm(2·13n1+1)(2·13nt+1)) for n1, m{1,5,11,17,25,35,43,67,91,123}{22r+125s+1 : r0,s0}, t0 and ni1 (i=1,…,t).  相似文献   

7.
Every graph can be represented as the intersection graph on a family of closed unit cubes in Euclidean space En. Cube vertices have integer coordinates. The coordinate matrix, A(G)={vnk} of a graph G is defined by the set of cube coordinates. The imbedded dimension of a graph, Bp(G), is a number of columns in matrix A(G) such that each of them has at least two distinct elements vnkvpk. We show that Bp(G)=cub(G) for some graphs, and Bp(G)n−2 for any graph G on n vertices. The coordinate matrix uses to obtain the graph U of radius 1 with 3n−2 vertices that contains as an induced subgraph a copy of any graph on n vertices.  相似文献   

8.
In this paper, we provide a solution of the quadrature sum problem of R. Askey for a class of Freud weights. Let r> 0, b (− ∞, 2]. We establish a full quadrature sum estimate
1 p < ∞, for every polynomial P of degree at most n + rn1/3, where W2 is a Freud weight such as exp(−¦x¦), > 1, λjn are the Christoffel numbers, xjn are the zeros of the orthonormal polynomials for the weight W2, and C is independent of n and P. We also prove a generalisation, and that such an estimate is not possible for polynomials P of degree M = m(n) if m(n) = n + ξnn1/3, where ξn → ∞ as n → ∞. Previous estimates could sum only over those xjn with ¦xjn¦ σx1n, some fixed 0 < σ < 1.  相似文献   

9.
In this paper, we give a lower bound for the size B(n) of a minimum broadcast graph of order n = 2k − 4, 2k − 6, 2k − 5 or 2k − 3 which is shown to be accurate in the cases when k = 5 and k = 6. This result provides, together with an upper bound obtained by a construction given in Bermond et al. (1992), an estimation of the value B(n) for n = 2k − 4.  相似文献   

10.
O. Guibert   《Discrete Mathematics》2000,210(1-3):71-85
Stack words stem from studies on stack-sortable permutations and represent classical combinatorial objects such as standard Young tableaux, permutations with forbidden sequences and planar maps. We extend existing enumerative results on stack words and we also obtain new results. In particular, we make a correspondence between nonseparable 3×n rectangular standard Young tableaux (or stack words where elements satisfy a ‘Towers of Hanoi’ condition) and nonseparable cubic rooted planar maps with 2n vertices enumerated by 2n(3n)!/((2n+1)!(n+1)!). Moreover, these tableaux without two consecutive integers in the same row are in bijection with nonseparable rooted planar maps with n+1 edges enumerated by 2(3n)!/((2n+1)!(n+1)!).  相似文献   

11.
In this paper we develop a concise and transparent approach for solving Mellin convolution equations where the convolutor is the product of an algebraic function and a Gegenbauer function. Our method is primarily based on

1. the use of fractional integral/differential operators;

2. a formula for Gegenbauer functions which is a fractional extension of the Rodrigues formula for Gegenbauer polynomials (see Theorem 3);

3. an intertwining relation concerning fractional integral/differential operators (see Theorem 1), which in the integer case reads (d/dx)2n+1 = (x−1 d/dx)nx2n+1(x−1 d/dx)n+1.

Thus we cover most of the known results on this type of integral equations and obtain considerable extensions. As a special illustration we present the Gegenbauer transform pair associated to the Radon transformation.  相似文献   


12.
Xiaoyun Lu 《Discrete Mathematics》1992,110(1-3):197-203
There is a so called generalized tic-tac-toe game playing on a finite set X with winning sets A1, A2,…, Am. Two players, F and S, take in turn a previous untaken vertex of X, with F going first. The one who takes all the vertices of some winning set first wins the game. Erd s and Selfridge proved that if |A1|=|A2|==|Am|=n and m<2n−1, then the game is a draw. This result is best possible in the sense that once m=2n−1, then there is a family A1, A2,…, Am so that F can win. In this paper we characterize all those sets A1,…, A2n−1 so that F can win in exactly n moves. We also get similar result in the biased games.  相似文献   

13.
A holey Schröder design of type h1n1h2n2hknk (HSD(h1n1h2n2hknk)) is equivalent to a frame idempotent Schröder quasigroup (FISQ(h1n1h2n2hknk)) of order n with ni missing subquasigroups (holes) of order hi, (1 i k), which are disjoint and spanning, that is, Σ1 i k nihi = n. In this paper, it is shown that an HSD(hn) exists if and only if h2n(n − 1) 0 (mod 4) with expceptions (h, n) ε {{(1,5),(1,9),(2,4)}} and the possible exception of (h, n) = (6,4).  相似文献   

14.
For a 1-dependent stationary sequence {Xn} we first show that if u satisfies p1=p1(u)=P(X1>u)0.025 and n>3 is such that 88np131, then
P{max(X1,…,Xn)u}=ν·μn+O{p13(88n(1+124np13)+561)}, n>3,
where
ν=1−p2+2p3−3p4+p12+6p22−6p1p2,μ=(1+p1p2+p3p4+2p12+3p22−5p1p2)−1
with
pk=pk(u)=P{min(X1,…,Xk)>u}, k1
and
|O(x)||x|.
From this result we deduce, for a stationary T-dependent process with a.s. continuous path {Ys}, a similar, in terms of P{max0skTYs<u}, k=1,2 formula for P{max0stYsu}, t>3T and apply this formula to the process Ys=W(s+1)−W(s), s0, where {W(s)} is the Wiener process. We then obtain numerical estimations of the above probabilities.  相似文献   

15.
An isometric path is merely any shortest path between two vertices. If the vertices of the hypercube Qn are represented by the set of 0–1 vectors of length n, an isometric path is obtained by changing the coordinates of a vector one at a time, never changing the same coordinate more than once. The minimum number of isometric paths required to cover the vertices of Qn is at least 2n/(n+1). We show that when n+1 is a power of 2, the lower bound is in fact the minimum. In doing so, we construct a family of disjoint isometric paths which can be used to find an upper bound for additional classes of hypercubes.  相似文献   

16.
Let sk(n) be the largest integer such that every n-point interval order with no antichain of more than k points includes an sk(n)-point semiorder. When k = 1, s1(n) = n since all interval orders with no two-point antichains are chains. Given (c1,...,c5) = (1, 2, 3, 4), it is shown that s2(n) = cn for n 4, s3(n) = cn for n 5, and for all positive n, s2 (n+4) =s2(n)+3, s3(n+5) = s3(n)+3. Hence s2 has a repeating pattern of length 4 [1, 2, 3, 3; 4, 5, 6, 6; 7, 8, 9, 9;...], and s3 has a repeating pattern of length 5 [1, 2, 3, 3, 4; 4, 5, 6, 6, 7; 7, 8, 9, 9, 10;...].

Let s(n) be the largest integer such that every n-point interval order includes an s(n)-point semiorder. It was proved previously that for even n from 4 to 14, and that s(17) = 9. We prove here that s(15) = s(16) = 9, so that s begins 1, 2, 3, 3, 4, 4,..., 8, 8, 9, 9, 9. Since s(n)/n→0, s cannot have a repeating pattern.  相似文献   


17.
Let 2nm be the order of an Hadamard matrix. Using block Golay sequences, a class of Hadamard matrices of order (r+4n+1)4n+1m2 is constructed, where r is the length of a Golay sequence.  相似文献   

18.
Let A be a square symmetric n × n matrix, φ be a vector from n, and f be a function defined on the spectral interval of A. The problem of computation of the vector u = f(A)φ arises very often in mathematical physics.

We propose the following method to compute u. First, perform m steps of the Lanczos method with A and φ. Define the spectral Lanczos decomposition method (SLDM) solution as um = φ Qf(H)e1, where Q is the n × m matrix of the m Lanczos vectors and H is the m × m tridiagonal symmetric matrix of the Lanczos method. We obtain estimates for uum that are stable in the presence of computer round-off errors when using the simple Lanczos method.

We concentrate on computation of exp(− tA)φ, when A is nonnegative definite. Error estimates for this special case show superconvergence of the SLDM solution. Sample computational results are given for the two-dimensional equation of heat conduction. These results show that computational costs are reduced by a factor between 3 and 90 compared to the most efficient explicit time-stepping schemes. Finally, we consider application of SLDM to hyperbolic and elliptic equations.  相似文献   


19.
In this paper, we prove that for every index perfect non-degenerate compact star-shaped hypersurface ∑ ⊂ R2n, there exist at least n non-hyperbolic closed characteristics with even Maslovtype indices on ∑ when n is even. When n is odd, there exist at least n closed characteristics with odd Maslov-type indices on ∑ and at least (n-1) of them are non-hyperbolic. Here we call a compact star-shaped hypersurface ∑ ⊂ R2n index perfect if it carries only finitely many geometrically distinct prime closed characteristics, and every prime closed characteristic (τ, y) on ∑ possesses positive mean index and whose Maslov-type index i(y, m) of its m-th iterate satisfies i(y, m) ≠-1 when n is even, and i(y, m) ∉ {-2, -1, 0} when n is odd for all m ∈ N.  相似文献   

20.
《Discrete Mathematics》1999,200(1-3):137-147
We form squares from the product of integers in a short interval [n, n + tn], where we include n in the product. If p is prime, p|n, and (2p) > n, we prove that p is the minimum tn. If no such prime exists, we prove tn √5n when n> 32. If n = p(2p − 1) and both p and 2p − 1 are primes, then tn = 3p> 3 √n/2. For n(n + u) a square > n2, we conjecture that a and b exist where n < a < b < n + u and nab is a square (except n = 8 and N = 392). Let g2(n) be minimal such that a square can be formed as the product of distinct integers from [n, g2(n)] so that no pair of consecutive integers is omitted. We prove that g2(n) 3n − 3, and list or conjecture the values of g2(n) for all n. We describe the generalization to kth powers and conjecture the values for large n.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号