首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For a positive integer k2, the k-Fibonacci sequence {gn(k)} is defined as: g1(k)==gk−2(k)=0, gk−1(k)=gk(k)=1 and for n>k2, gn(k)=gn−1(k)+gn−2(k)++gnk(k). Moreover, the k-Lucas sequence {ln(k)} is defined as ln(k)=gn−1(k)+gn+k−1(k) for n1. In this paper, we consider the relationship between gn(k) and ln(k) and 1-factors of a bipartite graph.  相似文献   

2.
A holey Schröder design of type h1n1h2n2hknk (HSD(h1n1h2n2hknk)) is equivalent to a frame idempotent Schröder quasigroup (FISQ(h1n1h2n2hknk)) of order n with ni missing subquasigroups (holes) of order hi, (1 i k), which are disjoint and spanning, that is, Σ1 i k nihi = n. In this paper, it is shown that an HSD(hn) exists if and only if h2n(n − 1) 0 (mod 4) with expceptions (h, n) ε {{(1,5),(1,9),(2,4)}} and the possible exception of (h, n) = (6,4).  相似文献   

3.
We partially characterize the rational numbers x and integers n 0 for which the sum ∑k=0 knxk assumes integers. We prove that if ∑k=0 knxk is an integer for x = 1 − a/b with a, b> 0 integers and gcd(a,b) = 1, then a = 1 or 2. Partial results and conjectures are given which indicate for which b and n it is an integer if a = 2. The proof is based on lower bounds on the multiplicities of factors of the Stirling number of the second kind, S(n,k). More specifically, we obtain for all integers k, 2 k n, and a 3, provided a is odd or divisible by 4, where va(m) denotes the exponent of the highest power of a which divides m, for m and a> 1 integers.

New identities are also derived for the Stirling numbers, e.g., we show that ∑k=02nk! S(2n, k) , for all integers n 1.  相似文献   


4.
《Discrete Mathematics》1999,200(1-3):61-77
We say (n, e) → (m, f), an (m, f) subgraph is forced, if every n-vertex graph of size e has an m-vertex spanned subgraph with f edges. For example, as Turán proved, (n,e)→(k,(k2)) for e> tk − 1(n) and (n,e) (k2)), otherwise. We give a number of constructions showing that forced pairs are rare. Using tools of extremal graph theory we also show infinitely many positive cases. Several problems remain open.  相似文献   

5.
Let S be a subdivision of d into n convex regions. We consider the combinatorial complexity of the image of the (k - 1)-skeleton of S orthogonally projected into a k-dimensional subspace. We give an upper bound of the complexity of the projected image by reducing it to the complexity of an arrangement of polytopes. If k = d − 1, we construct a subdivision whose projected image has Ω(n(3d−2)/2) complexity, which is tight when d 4. We also investigate the number of topological changes of the projected image when a three-dimensional subdivision is rotated about a line parallel to the projection plane.  相似文献   

6.
We consider embeddings of the complete t-ary trees of depth k (denotation Tk,t) as subgraphs into the hypercube of minimum dimension n. This n, denoted by dim(Tk,t), is known if max{k,t}2. First, we study the next open cases t=3 and k=3. We improve the known upper bound dim(Tk,3)2k+1 up to limk→∞dim(Tk,3)/k5/3 and show limt→∞dim(T3,t)/t=227/120. As a co-result, we present an exact formula for the dimension of arbitrary trees of depth 2, as a function of their vertex degrees. These results and new techniques provide an improvement of the known upper bound for dim(Tk,t) for arbitrary k and t.  相似文献   

7.
For a 1-dependent stationary sequence {Xn} we first show that if u satisfies p1=p1(u)=P(X1>u)0.025 and n>3 is such that 88np131, then
P{max(X1,…,Xn)u}=ν·μn+O{p13(88n(1+124np13)+561)}, n>3,
where
ν=1−p2+2p3−3p4+p12+6p22−6p1p2,μ=(1+p1p2+p3p4+2p12+3p22−5p1p2)−1
with
pk=pk(u)=P{min(X1,…,Xk)>u}, k1
and
|O(x)||x|.
From this result we deduce, for a stationary T-dependent process with a.s. continuous path {Ys}, a similar, in terms of P{max0skTYs<u}, k=1,2 formula for P{max0stYsu}, t>3T and apply this formula to the process Ys=W(s+1)−W(s), s0, where {W(s)} is the Wiener process. We then obtain numerical estimations of the above probabilities.  相似文献   

8.
A q × n array with entries from 0, 1,…,q − 1 is said to form a difference matrix if the vector difference (modulo q) of each pair of columns consists of a permutation of [0, 1,… q − 1]; this definition is inverted from the more standard one to be found, e.g., in Colbourn and de Launey (1996). The following idea generalizes this notion: Given an appropriate δ (-[−1, 1]t, a λq × n array will be said to form a (t, q, λ, Δ) sign-balanced matrix if for each choice C1, C2,…, Ct of t columns and for each choice = (1,…,t) Δ of signs, the linear combination ∑j=1t jCj contains (mod q) each entry of [0, 1,…, q − 1] exactly λ times. We consider the following extremal problem in this paper: How large does the number k = k(n, t, q, λ, δ) of rows have to be so that for each choice of t columns and for each choice (1, …, t) of signs in δ, the linear combination ∑j=1t jCj contains each entry of [0, 1,…, q t- 1] at least λ times? We use probabilistic methods, in particular the Lovász local lemma and the Stein-Chen method of Poisson approximation to obtain general (logarithmic) upper bounds on the numbers k(n, t, q, λ, δ), and to provide Poisson approximations for the probability distribution of the number W of deficient sets of t columns, given a random array. It is proved, in addition, that arithmetic modulo q yields the smallest array - in a sense to be described.  相似文献   

9.
《Discrete Mathematics》1999,200(1-3):137-147
We form squares from the product of integers in a short interval [n, n + tn], where we include n in the product. If p is prime, p|n, and (2p) > n, we prove that p is the minimum tn. If no such prime exists, we prove tn √5n when n> 32. If n = p(2p − 1) and both p and 2p − 1 are primes, then tn = 3p> 3 √n/2. For n(n + u) a square > n2, we conjecture that a and b exist where n < a < b < n + u and nab is a square (except n = 8 and N = 392). Let g2(n) be minimal such that a square can be formed as the product of distinct integers from [n, g2(n)] so that no pair of consecutive integers is omitted. We prove that g2(n) 3n − 3, and list or conjecture the values of g2(n) for all n. We describe the generalization to kth powers and conjecture the values for large n.  相似文献   

10.
We study the number of solutions N(B,F) of the diophantine equation n_1n_2 = n_3 n_4,where 1 ≤ n_1 ≤ B,1 ≤ n_3 ≤ B,n_2,n_4 ∈ F and F[1,B] is a factor closed set.We study more particularly the case when F={m = p_1~(ε1)···p_k~(εk),ε_j∈{0,1},1 ≤ j ≤ k},p_1,...,p_k being distinct prime numbers.  相似文献   

11.
In 1994, van Trung (Discrete Math. 128 (1994) 337–348) [9] proved that if, for some positive integers d and h, there exists an Sλ(t,k,v) such that
then there exists an Sλ(vt+1)(t,k,v+1) having v+1 pairwise disjoint subdesigns Sλ(t,k,v). Moreover, if Bi and Bj are any two blocks belonging to two distinct such subdesigns, then d|BiBj|<kh. In 1999, Baudelet and Sebille (J. Combin. Des. 7 (1999) 107–112) proved that if, for some positive integers, there exists an Sλ(t,k,v) such that
where m=min{s,vk} and n=min{i,t}, then there exists an
having pairwise disjoint subdesigns Sλ(t,k,v). The purpose of this paper is to generalize these two constructions in order to produce a new recursive construction of t-designs and a new extension theorem of t-designs.  相似文献   

12.
We introduce the differential polynomial of a graph. The differential polynomial of a graph G of order n is the polynomial B(G; x) :=∑?(G)k=-nB_k(G) x~(n+k), where B_k(G) denotes the number of vertex subsets of G with differential equal to k. We state some properties of B(G;x) and its coefficients.In particular, we compute the differential polynomial for complete, empty, path, cycle, wheel and double star graphs. We also establish some relationships between B(G; x) and the differential polynomials of graphs which result by removing, adding, and subdividing an edge from G.  相似文献   

13.
In this paper, the BBM-like equations with fully nonlinear dispersion, B(mn) equations: ut + (um)x − (un)xxt = 0 which exhibit solutions with compact support and with solitary patterns, are studied. The exact solitary-wave solutions with compact support and exact special solutions with solitary patterns of the equations are found by a new method. The special cases, B(2, 2) and B(3, 3), are used to illustrate the concrete scheme of our approach presented by this paper in B(mn) equations. The nonlinear equations B(mn) are addressed for two different cases, namely when m = n being odd and even integers. General formulas for the solutions of B(mn) equations are established.  相似文献   

14.
We are concerned with the behavior of the minimum (maximum) eigenvalue λ0(n) (λn(n)) of an (n + 1) × (n + 1) Hermitian Toeplitz matrix Tn(ƒ) where ƒ is an integrable real-valued function. Kac, Murdoch, and Szegö, Widom, Parter, and R. H. Chan obtained that λ0(n) — min ƒ = O(1/n2k) in the case where ƒ C2k, at least locally, and ƒ — inf ƒ has a zero of order 2k. We obtain the same result under the second hypothesis alone. Moreover we develop a new tool in order to estimate the extreme eigenvalues of the mentioned matrices, proving that the rate of convergence of λ0(n) to inf ƒ depends only on the order ρ (not necessarily even or integer or finite) of the zero of ƒ — inf ƒ. With the help of this tool, we derive an absolute lower bound for the minimal eigenvalues of Toeplitz matrices generated by nonnegative L1 functions and also an upper bound for the associated Euclidean condition numbers. Finally, these results are extended to the case of Hermitian block Toeplitz matrices with Toeplitz blocks generated by a bivariate integrable function ƒ.  相似文献   

15.
A k-connected graph G is said to be critically k-connected if Gv is not k-connected for any vV(G). We show that if n,k are integers with k4 and nk+2, and G is a critically k-connected graph of order n, then |E(G)|n(n−1)/2−p(nk)+p2/2, where p=(n/k)+1 if n/k is an odd integer and p=n/k otherwise. We also characterize extremal graphs.  相似文献   

16.
Wen-Hsiung Lin 《Topology》2001,40(6):1259-1293
The Stiefel manifolds V2m−1,k are shown to be non-neutral for m5, 2m−1+2k=2ℓ<2m−2.  相似文献   

17.
In this paper we describe and analyse an algorithm for solving the satisfiability problem. If E is a boolean formula in conjunctive normal form with n variables and r clauses, then we will show that this algorithm solves the satisfiability problem for formulas with at most k literals per clause in time O(|Fkn), where k is the greatest number satisfying k = 2−1/kk−1 (in the case of 3-satisfiability 3 = 1,6181).  相似文献   

18.
If AB are n × n M matrices with dominant principal diagonal, we show that 3[det(A + B)]1/n ≥ (det A)1/n + (det B)1/n.  相似文献   

19.
In this paper, we provide a solution of the quadrature sum problem of R. Askey for a class of Freud weights. Let r> 0, b (− ∞, 2]. We establish a full quadrature sum estimate
1 p < ∞, for every polynomial P of degree at most n + rn1/3, where W2 is a Freud weight such as exp(−¦x¦), > 1, λjn are the Christoffel numbers, xjn are the zeros of the orthonormal polynomials for the weight W2, and C is independent of n and P. We also prove a generalisation, and that such an estimate is not possible for polynomials P of degree M = m(n) if m(n) = n + ξnn1/3, where ξn → ∞ as n → ∞. Previous estimates could sum only over those xjn with ¦xjn¦ σx1n, some fixed 0 < σ < 1.  相似文献   

20.
Associated to any simplicial complex Δ on n vertices is a square-free monomial ideal IΔ in the polynomial ring A = k[x1, …, xn], and its quotient k[Δ] = A/IΔ known as the Stanley-Reisner ring. This note considers a simplicial complex Δ* which is in a sense a canonical Alexander dual to Δ, previously considered in [1, 5]. Using Alexander duality and a result of Hochster computing the Betti numbers dimk ToriA (k[Δ],k), it is shown (Proposition 1) that these Betti numbers are computable from the homology of links of faces in Δ*. As corollaries, we prove that IΔ has a linear resolution as A-module if and only if Δ* is Cohen-Macaulay over k, and show how to compute the Betti numbers dimk ToriA (k[Δ],k) in some cases where Δ* is wellbehaved (shellable, Cohen-Macaulay, or Buchsbaum). Some other applications of the notion of shellability are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号