首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simultaneous determination of hydrazine (HZ) and thiosemicarbazide (TSC) by partial least squares (PLS) and principle component regression (PCR) was carried out based on kinetic data of novel potentiometry. The rate of chloride ion production in reaction of HZ and TSC with N‐chlorosuccinimide (NCS) was monitored by a chloride ion‐selective electrode. The experimental dada shows not only the good ability of ion‐selective electrodes (ISEs) as detectors for the direct determination of chloride ions but also for simultaneous kinetic‐potentiometric analysis using chemometrics methods. The methods are based on the difference observed in the production rate of chloride ions. The results show that simultaneous determination of HZ and TSC can be performed in their concentration ranges of 0.7‐20.0 and 0.5‐20.0 μg mL?1, respectively. The total relative standard error for applying PLS and PCR methods to 9 synthetic samples in the concentration ranges of 0.8‐10 μg mL?1 of TSC and 1.0‐12.0 μg mL?1 of HZ was 4.62 and 4.98, respectively. The effects of certain foreign ions upon the reaction rate were determined for the assessment of the selectivity of the method. Both methods (PLS and PCR) were validated using a set of synthetic sample mixtures and then applied for simultaneous determination of HZ and TSC in water samples.  相似文献   

2.
Simultaneous determination of hydrazine (HZ) and phenylhydrazine (PHZ) by H-point standard addition method (HPSAM) and partial least squares (PLS) regression was carried out based on kinetic data from novel potentiometry methods. The rate of chloride ion production in the reaction of HZ and PHZ with N-chlorosuccinimide (NCS) was monitored by a chloride ion-selective electrode. The experimental data show the good ability of ion-selective electrodes (ISEs) as detectors not only for the direct determination of chloride ion but also for simultaneous kinetic-potentiometric analysis using HPSAM and PLS methods. The methods are based on the differences observed in the production rate of chloride ions. The results show that simultaneous determination of HZ and PHZ can be performed in concentration ranges of 0.5 - 20.0 and 0.8 - 25.0 microg mL(-1), respectively. The total relative standard error for applying the PLS method to 8 synthetic samples in the concentration ranges of 1.0 - 16.0 microg mL(-1) for HZ and 2.0 - 16.0 microg mL(-1) for PHZ was 3.96. In order for the selectivity of the method to be assessed, we evaluated the effects of certain foreign ions upon the reaction rate and assessed the selectivity of the method. Both methods (PLS and HPSAM) were evaluated using a set of synthetic sample mixtures and then applied for simultaneous determination of HZ and PHZ in water samples.  相似文献   

3.
《Analytical letters》2012,45(6):1209-1226
Abstract

A sensitive method for the simultaneous spectrophotometric determination of Fe(II), Cu(II), Zn(II), and Mn(II) in mixtures has been developed with the aid of multivariate calibration methods, such as classical least squares (CLS), principal component regression (PCR) and partial least squares (PLS). The method is based on the spectral differences of the analytes in their complexation reaction with 4‐(2‐pyridylazo)‐resorcinol (PAR) and the use of full spectra with wavelengths in the range of 300–600 nm. It was found that both the spectral positive and negative bands obtained against the PAR blank, are proportional to the concentration for each metal complex. The obtained linear calibration concentration ranges are 0.025–0.6, 0.05–0.8, 0.025–0.8, and 0.05–0.8 µg ml?1 for Fe(II), Cu(II), Zn(II), and Mn(II), respectively, and the LODs for the four metal ions were found to be approximately 1–3×10?2 µg ml?1. The proposed method was applied to a verification set of synthetic mixtures of these four metal ions, with models built in three different wavelength ranges, i.e., 300–450, 450–600, and 300–600 nm, corresponding to the positive, negative bands and their combinations, respectively. It was shown that the PLS model for the 300–600 nm range gave the best results (RPET=6.9% and average recovery ~100%; cf. PCR: RPET=9.5% and average Recovery ~110%). This method was also successfully applied for the determination of the four metal ions in pharmaceutical preparations, chicken feedstuff, and water samples.  相似文献   

4.
Simultaneous kinetic-potentiometric determination of binary mixture of permanganate (MnO4 ?) and dichromate (Cr2O7 2?) by H-point standard addition method (HPSAM), partial least squares (PLS) and principal component regression (PCR) is described. In this work, the difference between the rate of the oxidation reaction of Fe(II) to Fe(III) in the presence of MnO4 ? and Cr2O7 2? formed the basis of the method. The rate of the consumed fluoride ion for making the complex was detected by a fluoride ion selective electrode (FISE). The results show that the simultaneous determination of MnO4 ? and Cr2O7 2? could be conducted in their concentration ranges of 0.5?C10.0 and 0.1?C20.0 ??g ml?1, respectively. The total relative standard error (RSE) for applying the PLS and PCR methods to 9 synthetic samples was 5.30 and 3.17, respectively in the concentration range of MnO4 ?, and 3.30 and 2.04, respectively, in the concentration range of Cr2O7 2?. In order for the selectivity of the method to be assessed, we evaluated the effects of certain foreign ions upon the reaction rate. The proposed methods (HPSAM, PLS and PCR) were evaluated using a set of synthetic sample mixtures and then applied to the simultaneous determination of MnO4 ? and Cr2O7 2? in different water samples.  相似文献   

5.
A simple and reliable method for simultaneous spectrophotometric determination of iron(II) and cobalt(II) has been established. The method is based on complex formation with 1‐(2‐pyridylazo)‐2‐naphtol (PAN) in a micellar medium. Despite a spectral overlap, Fe2+ and Co2+ have been simultaneously determined with chemometric approaches involving principal component artificial neural network (PC‐ANN), principal component regression (PCR) and partial least squares (PLS). Various synthetic mixtures of iron and cobalt were assessed and the results obtained by the applications of these chemometric approaches were evaluated and compared. It was found that the PC‐ANN method afforded relatively better precision than that of PCR or PLS. The proposed method permits detection limits of 0.05 and 0.07 ng mL?1 for Co and Fe, respectively. The influences of pH, ligand amount, solvent percentage and time on the absorbance were also investigated. The proposed method was also applied satisfactorily for the determination of Fe(II) and Co(II) in real and synthetic samples.  相似文献   

6.
方慧文  a  李挥a  李彦威b  赵静c  续健b 《中国化学》2009,27(3):546-550
同分异构体的同时测定一直是分析化学领域的热点和难点问题,本文将化学计量学中的多元校正方法,如偏最小二乘法和人工神经网络法与紫外分光光度法相结合,同时测定了紫外吸收光谱严重重叠的甲基苯甲醛的三种同分异构体混合体系中各组分的含量。确定了测定的最佳波长范围为230~304 nm;测得48个混合标样的吸光度值用于建立模型,其中,邻、间、对甲基苯甲醛的浓度范围分别为6.0~15.0、7.0~16.0和8.0~19.0 μg·mL-1。7个模拟样品作为监测集用于检验所建立模型的预测性能。本文还讨论了三种组分浓度比例对所建立模型预测性能的影响并确定了可以准确测定的浓度比例范围。所建立的方法用于模拟样品的测定,其回收率在84.00%与109.60%之间。与偏最小二乘法的测定结果比较,经成对t检验表明,两种方法对邻、间甲基苯甲醛测定结果无显著性差异;而对甲基苯甲醛的测定,人工神经网络法的测定结果优于偏最小二乘法。  相似文献   

7.
《Analytical letters》2012,45(2):349-360
Abstract

Partial least‐squares algorithm (PLS)‐1 was used for the solid‐phase spectrofluorimetric determination of paracetamol (PA) and caffeine (CF) in pharmaceutical formulations. In despite of the closely overlapping spectral bands, the method allows the simultaneous quantification and sample preparation prior to analysis is not required. The calibration set consisted of 96 samples with 100–400 mg/g?1 PA plus 10–65 mg/g?1 CF; another set of 25 samples was used for external validation. Agreement between predicted and experimental concentrations was fair (r=0.993 and 0.964 for PA and CF models). Prediction performance was evaluated in terms of the coefficient of variability (CV), relative predictive determination (RPD), and ratio error range (RER). The PLS‐1 model was used for the determination of PA and CF in pharmaceutical formulations.  相似文献   

8.
Differential Pulse Voltammetry has been used for the simultaneous determination of cysteine, tyrosine and trptophan on the unmodified glassy carbon electrode. In the analysis of these analytes in the same samples, the main difficulty is the high degree of overlapping of voltammograms. The relationships between the currents and the concentrations are complex and highly nonlinear. The predictive ability of principal component regression (PCR), partial least squares regression (PLS), genetic algorithm‐partial least squares regression (GA‐PLS) and principal component‐artificial neural networks (PC‐ANNs) were examined for simultaneous determination of three amino acids. For a regression model, everything that could not help in constructing the model may be considered as noise without further specification. PC‐ANN and GA‐PLS use significant data and show superiority over other applied multivariate methods. The proposed method was also applied satisfactorily to determination of analytes in some synthetic samples.  相似文献   

9.
《Analytical letters》2012,45(7):1401-1410
Abstract

A Fourier transform infrared (FT‐IR) spectrometric method was developed for the rapid, direct measurement of chromium (tris) picolinate [Cr(pic)3] in different pharmaceutical products. Conventional KBr potassium bromine spectra were compared for best determination of active substance in drug preparations. Lambert‐Beer's law and two chemometric approaches, partial least squares (PLS) and principal component regression (PCR+) methods, were used in data processing.  相似文献   

10.
《Analytical letters》2012,45(4):751-761
Abstract

A partial least‐squares calibration (PLS) method has been developed for simultaneous quantitative determination of mepyramine maleate (MAM), lidocaine hydrochloride (LIH), and dexpanthenol (DPA) in pharmaceutical preparations. The resolution of these mixtures has been accomplished by using partial least‐squares (PLS‐2) regression analysis of electronic absorption spectral data without prior separation or derivatization. The experimental calibration matrix was constructed with 27 samples. The concentration ranges considered were 2, 3, 4 µg mL?1 for MAM, 2, 3, 4 µg mL?1 for LIH, and 8, 10, 12 µg mL?1 for DPA. The absorbances were recorded between 190 and 340 nm every 5 nm. The results show that PLS‐2 is a simple, rapid, and accurate method applied to the determination of these compounds in pharmaceuticals.  相似文献   

11.
《Analytical letters》2012,45(11):2359-2372
Abstract

Ternary mixtures of nitrophenol isomers have been simultaneously determined in synthetic and real matrix by application of genetic algorithm and partial least squares model. All factors affecting the sensitivity were optimized and the linear dynamic range for determination of nitrophenol isomers found. The simultaneous determination of nitrophenol mixtures by using spectrophotometric methods is a difficult problem, due to spectral interferences. The partial least squares modeling was used for the multivariate calibration of the spectrophotometric data. A genetic algorithm is a suitable method for selecting wavelength for PLS calibration of mixtures with almost identical spectra without loss prediction capacity. The experimental calibration matrix was designed by measuring the absorbance over the range 300–520 nm for 21 samples of 1–20 µg mL?1, 1–20 µg mL?1, and 1–10 µg mL?1 of m‐nitrophenol, o‐nitrophenol, and p‐nitrophenol, respectively. The root mean square error of prediction for m‐nitrophenol, o‐nitrophenol, and p‐nitrophenol with genetic algorithms and without genetic algorithms were 0.3732, 0.5997, 0.3181 and 0.7309, 0.9961, 1.0055, respectively. The proposed method was successfully applied for the determination of m‐nitrophenol, o‐nitrophenol, and p‐nitrophenol in synthetic and water samples.  相似文献   

12.
偏最小二乘法及主组分回归法用于药物组分的测定   总被引:9,自引:1,他引:9  
刘家宝  任英 《分析化学》1990,18(10):887-892
本文研究了多元校准方法——偏最小二乘法(PLS)和主组份回归法(PCR)在药物多组份光度分析中的应用,获得了较满意的结果。而且在系列校准样品的实验设计、交叉证实法确定最佳因子数以及空缺组份体系的分析等方面进行了探讨。  相似文献   

13.
《Analytical letters》2012,45(11):2058-2076
Abstract

A novel voltammetric method for simultaneous determination of the glucocorticoid residues prednisone, prednisolone, and dexamethasone was developed. All three compounds were reduced at a mercury electrode in a Britton–Robinson buffer (pH 3.78), and well-defined voltammetric waves were observed. However, the voltammograms of these three compounds overlapped seriously and showed nonlinear character, and thus, it was difficult to analyze the compounds individually in their mixtures. In this work, two chemometrics methods, principal component regression (PCR) and partial least squares (PLS), were applied to resolve the overlapped voltammograms, and the calibration models were established for simultaneous determination of these compounds. Under the optimum experimental conditions, the limits of detection (LOD) were 5.6, 8.3, and 16.8 µg l?1 for prednisone, prednisolone, and dexamethasone, respectively. The proposed method was also applied for the determination of these glucocorticoid residues in the rabbit plasma and human urine samples with satisfactory results.  相似文献   

14.
This work presents a novel method for simultaneous spectrophotometric determination of phosphate and silicate by using a cross injection analysis (CIA) coupled with the use of partial least squares (PLS) for data evaluation. The detection principle is based on the well-known ‘molybdenum blue’ method. The molybdate ions in the presence of stannous chloride in acidic medium give phosphomolybdenum blue and silicomolybdenum blue as products. In this work, all the liquids, including sample and reagents were simultaneously introduced into a CIA platform by using two peristaltic pumps for controlling the x-channel and y-channel flow which was automatically manipulated by using in-house control board. Crossflow provides sufficient mixing inside the platform prior detection of the absorption spectra of blue complexes in the wavelength of 400–900 nm. Since spectra of the blue colour product of phosphate and silicate are resemblant, these two analytes therefore reciprocally interfere with one another. This results in difficulty in simultaneous analysis of phosphate and silicate. In this work, PLS was utilised as assistor of CIA system for simultaneous analysis of phosphate and silicate using molybdenum blue reaction without using any modification of reagents and addition of selective masking agent. The calibration ranges are 0.1–6 mgP L?1 and 5–100 mgSi L?1 for phosphate and silicate, respectively. By using CIA coupled with PLS for data evaluation, the analysis of two analytes was achieved within 1.5 min with only single injection. The developed system was applied to natural water samples and the system was validated with the conventional methods. By statistical paired t-test, there was no evidence of significant difference at 95% confidence level (tstat = 2.28, tcritical = 2.31 and tstat = 0.62, tcritical = 2.31 for phosphate and silicate, respectively). This implied that the chemometrics-assisted CIA system was successfully developed for simultaneous spectrophotometric determination of phosphate and silicate.  相似文献   

15.
A novel method based on moving window (MW) strategy has been proposed to simultaneously choose the optimal pH region and latent variables (LVs) number for partial least squares (PLS) regression in potentiometric titration multivariate calibration. In this method, the leave‐one‐out cross‐validation with varying LVs number is run on different selected MW and, consequently, that revealing optimal results is selected. The method is applied to the simultaneous determination of H+, NH3OH+ and NH in Raschig synthesis mixtures, which is of industrial importance. A comparison in the modeling power of PLS is made between non‐processed data set and data set processed by the MW method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
An adsorptive differential pulse stripping method for the simultaneous determination of lead and tin is proposed. The procedure involves an adsorptive accumulation of lead and tin on a hanging mercury drop electrode (HMDE), followed by oxidation of adsorbed lead and tin by voltammetric scan using differential pulse modulation. The optimum experimental conditions are: 0.2 mol L?1 HNO3, accumulation potential of ?900 mV versus Ag/AgCl, accumulation time of 200 s, scan rate of 20 mV s?1 and pulse height of 80 mV. Lead and tin peak currents were observed in the same potential region at about ?400 mV. The simultaneous determination of lead and tin by using voltammetry is a difficult problem in analytical chemistry, due to voltammogram interferences. The resolution of a mixture of lead and tin by the application of orthogonal signal correction‐partial least squares (OSC‐PLS) was performed. The linear dynamic ranges were 0.003‐0.35 and 0.008‐0.50 μg mL?1 and detection limits were land 3 ng mL?1 for lead and tin, respectively. The RMSEP for lead and tin with OSC and without OSC were 2.8737, 6.0557 and 8.0941, 9.5151, respectively. The capability of the method for the analysis of real samples was evaluated by the determination of lead and tin in water samples with satisfactory results.  相似文献   

17.
A new methodology is presented for the simultaneous determination of chromium(VI) and aluminum(III) by differential‐pulse adsorptive stripping voltammetry (DPAdSV) with Pyrocatechol Violet (PCV) as a complexing agent. In this procedure, a partial least‐squares regression (PLS) is used for the resolution of the strongly overlapping voltammetric signals from mixtures of CrVI and AlIII in the presence of PCV. The procedure was successfully applied to the determination of these metals in river water.  相似文献   

18.
A rapid method was developed and validated by ultra‐performance liquid chromatography–triple quadrupole mass spectroscopy with ultraviolet detection (UPLC‐UV‐MS) for simultaneous determination of paris saponin I, paris saponin II, paris saponin VI and paris saponin VII. Partial least squares discriminant analysis (PLS‐DA) based on UPLC and Fourier transform infrared (FT‐IR) spectroscopy was employed to evaluate Paris polyphylla var. yunnanensis (PPY) at different harvesting times. Quantitative determination implied that the various contents of bioactive compounds with different harvesting times may lead to different pharmacological effects; the average content of total saponins for PPY harvested at 8 years was higher than that from other samples. The PLS‐DA of FT‐IR spectra had a better performance than that of UPLC for discrimination of PPY from different harvesting times.  相似文献   

19.
Simultaneous determination of uranium and thorium using arsenazo III as a chromogenic reagent at pH 1.70 by H‐point standard addition method (HPSAM) and partial least squares (PLS) calibration is described. Under optimum conditions, the simultaneous determinations of uranium and thorium by HPSAM were performed. The absorbencies at one pair of wavelengths, 649 and 669 nm, were monitored with the addition of standard solutions of uranium. The results of applying the HPSAM showed that uranium and thorium can be determined simultaneously with weight concentration ratios of uranium to thorium varying from 20:1 to 1:15 in the mixed sample. By multivariate calibration methods such as PLS, it is possible to obtain a model adjusted to the concentration values of the mixtures used in the calibration range. In this study, the calibration model is based on absorption spectra in the 600–750 nm range for 25 different mixtures of uranium and thorium. Calibration matrices contained 0.10–21.00 and 0.25–18.5 μg mL?1 of uranium and thorium, respectively. The RMSEP for uranium and thorium were 0.7400 and 0.7276, respectively. Both proposed methods (HPSAM and PLS) were also successfully applied to the determination of uranium and thorium in several synthetic and real matrix samples.  相似文献   

20.
Li B  Wang D  Lv J  Zhang Z 《Talanta》2006,69(1):160-165
A flow-injection chemiluminescence (CL) system is proposed for simultaneous determination of Co2+ and Cu2+ using partial least squares (PLS) calibration. This method is based on the fact that both Co2+ and Cu2+ catalyse the CL reaction of luminol-H2O2, and that their kinetic characteristics of Co2+ and Cu2+ are significantly different in the luminol-H2O2 system. The CL intensity was measured and recorder at different reaction times of luminol-H2O2Co2+Cu2+, and the obtained data were processed by the chemometric approach of partial least squares. The experimental calibration set was composed of 16 sample solutions using an orthogonal calibration design for two component mixtures. The proposed method offers the potential advantages of high sensitivity, simplicity and rapidity for Co2+ and Cu2+ determination, and was successfully applied to the simultaneous determination of both analytes in real water sample. The present paper demonstrated that the simultaneous determination of two metal ions without any prior separation has been possible using flow-injection CL system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号