首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
In traditional edge searching one tries to clean all of the edges in a graph employing the least number of searchers. It is assumed that each edge of the graph initially has a weight equal to one. In this paper we modify the problem and introduce the Weighted Edge Searching Problem by considering graphs with arbitrary positive integer weights assigned to its edges. We give bounds on the weighted search number in terms of related graph parameters including pathwidth. We characterize the graphs for which two searchers are sufficient to clear all edges. We show that for every weighted graph the minimum number of searchers needed for a not-necessarily-monotonic weighted edge search strategy is enough for a monotonic weighted edge search strategy, where each edge is cleaned only once. This result proves the NP-completeness of the problem.  相似文献   

2.
In this paper, we consider a new edge colouring problem motivated by wireless mesh networks optimization: the proportional edge colouring problem. Given a graph G with positive weights associated to its edges, we want to find a proper edge colouring which assigns to each edge at least a proportion (given by its weight) of all the colours. If such colouring exists, we want to find one using the minimum number of colours. We proved that deciding if a weighted graph admits a proportional edge colouring is polynomial while determining its proportional edge chromatic number is NP-hard. We also give a lower and an upper bound that can be polynomially computed. We finally characterize some graphs and weighted graphs for which we can determine the proportional edge chromatic number.  相似文献   

3.
A weighted graph is a graph in which every edge is assigned a non-negative real number. In a weighted graph, the weight of a path is the sum of the weights of its edges, and the weighed degree of a vertex is the sum of the weights of the edges incident with it. In this paper we give three weighted degree conditions for the existence of heavy or Hamilton paths with one or two given end-vertices in 2-connected weighted graphs.  相似文献   

4.
A main result in combinatorial optimization is that clique and chromatic number of a perfect graph are computable in polynomial time (Grötschel, Lovász and Schrijver 1981). The circular-clique and circular-chromatic number are well-studied refinements of these graph parameters, and circular-perfect graphs form the corresponding superclass of perfect graphs. So far, it is unknown whether the (weighted) circular-clique and circular-chromatic number of a circular-perfect graph are computable in polynomial time. In this paper, we show the polynomial time computability of these two graph parameters for some super-classes of perfect graphs with the help of polyhedral arguments.  相似文献   

5.
In this paper we give some integer programming formulations for the Steiner tree problem on undirected and directed graphs and study the associated polyhedra. We give some families of facets for the undirected case along with some compositions and extensions. We also give a projection that relates the Steiner tree polyhedron on an undirected graph to the polyhedron for the corresponding directed graph. This is used to show that the LP-relaxation of the directed formulation is superior to the LP-relaxation of the undirected one.Corresponding author.  相似文献   

6.
Let us consider weighted graphs, where the weights of the edges are positive definite matrices. The eigenvalues of a weighted graph are the eigenvalues of its adjacency matrix and the spectral radius of a weighted graph is also the spectral radius of its adjacency matrix. In this paper, we obtain two upper bounds for the spectral radius of weighted graphs and compare with a known upper bound. We also characterize graphs for which the upper bounds are attained.  相似文献   

7.
Computing the weighted coloring number of graphs is a classical topic in combinatorics and graph theory. Recently these problems have again attracted a lot of attention for the class of quasi-line graphs and more specifically fuzzy circular interval graphs.The problem is NP-complete for quasi-line graphs. For the subclass of fuzzy circular interval graphs however, one can compute the weighted coloring number in polynomial time using recent results of Chudnovsky and Ovetsky and of King and Reed. Whether one could actually compute an optimal weighted coloring of a fuzzy circular interval graph in polynomial time however was still open.We provide a combinatorial algorithm that computes weighted colorings and the weighted coloring number for fuzzy circular interval graphs efficiently. The algorithm reduces the problem to the case of circular interval graphs, then making use of an algorithm by Gijswijt to compute integer decompositions.  相似文献   

8.
The notion of (circular) colorings of edge‐weighted graphs is introduced. This notion generalizes the notion of (circular) colorings of graphs, the channel assignment problem, and several other optimization problems. For instance, its restriction to colorings of weighted complete graphs corresponds to the traveling salesman problem (metric case). It also gives rise to a new definition of the chromatic number of directed graphs. Several basic results about the circular chromatic number of edge‐weighted graphs are derived. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 107–116, 2003  相似文献   

9.
We investigate chip-firing with respect to open covers of discrete graphs and metric graphs. For the case of metric graphs we show that given an open cover and a sink q, stabilization of a divisor D is unique and that there is a distinguished configuration equivalent to D, which we call the critical configuration. Also, we show that given a double cover of the metric graph by stars, which is the continuous analogue of the sandpile model, the critical configurations are in bijection with reduced divisors. Passing to the discrete case, we interpret open covers of a graph as simplicial complexes on the vertex and observe that chip-firing with respect to a simplicial complex is equivalent to the model introduced by Paoletti [G. Paoletti. July 11 2007: Master in Physics at University of Milan, defending thesis “Abelian sandpile models and sampling of trees and forests”; supervisor: Prof. S. Caracciolo. http://pcteserver.mi.infn.it/caraccio/index.html]. We generalize this setup for directed graphs using weighted simplicial complexes on the vertex set and show that the fundamental results extend. In the undirected case we present a generalization of the Cori-Le Borgne algorithm for chip-firing models via open covers, giving an explicit bijection between the critical configurations and the spanning trees of a graph.(http://www.elsevier.com/locate/endm)  相似文献   

10.
本文首先给出了简单图的度序列的平方和的上界,利用这些结果,求出了简单图的代数连通度的几个上下界并确定了它们的临界图。另外,文章也给出了加权图的代数连通度的一个下界。  相似文献   

11.
The Laplacian and Dirac operators on critical planar graphs   总被引:6,自引:0,他引:6  
On a periodic planar graph whose edge weights satisfy a certain simple geometric condition, the discrete Laplacian and Dirac operators have the property that their determinants and inverses only depend on the local geometry of the graph. We obtain explicit expressions for the logarithms of the (normalized) determinants, as well as the inverses of these operators. We relate the logarithm of the determinants to the volume plus mean curvature of an associated hyperbolic ideal polyhedron. In the associated dimer and spanning tree models, for which the determinants of the Dirac operator and the Laplacian respectively play the role of the partition function, this allows us to compute the entropy and correlations in terms of the local geometry. In addition, we define a continuous family of special discrete holomorphic functions which, via convolutions, gives a general process for constructing discrete holomorphic functions and discrete harmonic functions on critical planar graphs. Oblatum 6-III-2002 & 12-VI-2002?Published online: 6 August 2002  相似文献   

12.
Lovász theta function and the related theta body of graphs have been in the center of the intersection of four research areas: combinatorial optimization, graph theory, information theory, and semidefinite optimization. In this paper, utilizing a modern convex optimization viewpoint, we provide a set of minimal conditions (axioms) under which certain key, desired properties are generalized, including the main equivalent characterizations of the theta function, the theta body of graphs, and the corresponding antiblocking duality relations. Our framework describes several semidefinite and polyhedral relaxations of the stable set polytope of a graph as generalized theta bodies. As a by-product of our approach, we introduce the notion of “Schur Lifting” of cones which is dual to PSD Lifting (more commonly used in SDP relaxations of combinatorial optimization problems) in our axiomatic generalization. We also generalize the notion of complements of graphs to diagonally scaling-invariant polyhedral cones. Finally, we provide a weighted generalization of the copositive formulation of the fractional chromatic number by Dukanovic and Rendl from 2010.  相似文献   

13.
A weighted (unweighted) graph G is called equiarboreal if the sum of weights (the number) of spanning trees containing a given edge in G is independent of the choice of edge. In this paper, we give some resistance characterizations of equiarboreal weighted and unweighted graphs, and obtain the necessary and sufficient conditions for k-subdivision graphs, iterated double graphs, line graphs of regular graphs and duals of planar graphs to be equiarboreal. Applying these results, we obtain new infinite families of equiarboreal graphs, including iterated double graphs of 1-walk-regular graphs, line graphs of triangle-free 2-walk-regular graphs, and duals of equiarboreal planar graphs.  相似文献   

14.
As the extension of the previous work by Ciucu and the present authors [M. Ciucu, W.G. Yan, F.J. Zhang, The number of spanning trees of plane graphs with reflective symmetry, J. Combin. Theory Ser. A 112 (2005) 105-116], this paper considers the problem of enumeration of spanning trees of weighted graphs with an involution which allows fixed points. We show that if G is a weighted graph with an involution, then the sum of weights of spanning trees of G can be expressed in terms of the product of the sums of weights of spanning trees of two weighted graphs with a smaller size determined by the involution of G. As applications, we enumerate spanning trees of the almost-complete bipartite graph, the almost-complete graph, the Möbius ladder, and the almost-join of two copies of a graph.  相似文献   

15.
In this paper, we approach the quality of a greedy algorithm for the maximum weighted clique problem from the viewpoint of matroid theory. More precisely, we consider the clique complex of a graph (the collection of all cliques of the graph) which is also called a flag complex, and investigate the minimum number k such that the clique complex of a given graph can be represented as the intersection of k matroids. This number k can be regarded as a measure of “how complex a graph is with respect to the maximum weighted clique problem” since a greedy algorithm is a k-approximation algorithm for this problem. For any k>0, we characterize graphs whose clique complexes can be represented as the intersection of k matroids. As a consequence, we can see that the class of clique complexes is the same as the class of the intersections of partition matroids. Moreover, we determine how many matroids are necessary and sufficient for the representation of all graphs with n vertices. This number turns out to be n-1. Other related investigations are also given.  相似文献   

16.
For any set A of n points in 2, we define a (3n - 3)-dimensional simple polyhedron whose face poset is isomorphic to the poset of non-crossing marked graphs with vertex set A, where a marked graph is defined as a geometric graph together with a subset of its vertices. The poset of non-crossing graphs on A appears as the complement of the star of a face in that polyhedron. The polyhedron has a unique maximal bounded face, of dimension 2ni + n - 3 where ni is the number of points of A in the interior of conv (A). The vertices of this polytope are all the pseudo-triangulations of A, and the edges are flips of two types: the traditional diagonal flips (in pseudo-triangulations) and the removal or insertion of a single edge. As a by-product of our construction we prove that all pseudo-triangulations are infinitesimally rigid graphs.  相似文献   

17.
We study the stable norm on the first homology of a Riemannian polyhedron. In the one-dimensional case (metric graphs), the geometry of the unit ball of this norm is completely described by the combinatorial structure of the graph. For a smooth manifold of dimension ≥3 and using polyhedral techniques, we show that a large class of polytopes appears as unit ball of the stable norm associated to some metric conformal to a given one. Received: 18 March  相似文献   

18.
The complexity of a graph can be obtained as a derivative of a variation of the zeta function [S. Northshield, A note on the zeta function of a graph, J. Combin. Theory Ser. B 74 (1998) 408-410] or a partial derivative of its generalized characteristic polynomial evaluated at a point [D. Kim, H.K. Kim, J. Lee, Generalized characteristic polynomials of graph bundles, Linear Algebra Appl. 429 (4) (2008) 688-697]. A similar result for the weighted complexity of weighted graphs was found using a determinant function [H. Mizuno, I. Sato, On the weighted complexity of a regular covering of a graph, J. Combin. Theory Ser. B 89 (2003) 17-26]. In this paper, we consider the determinant function of two variables and discover a condition that the weighted complexity of a weighted graph is a partial derivative of the determinant function evaluated at a point. Consequently, we simply obtain the previous results and disclose a new formula for the complexity from a variation of the Bartholdi zeta function. We also consider a new weighted complexity, for which the weights of spanning trees are taken as the sum of weights of edges in the tree, and find a similar formula for this new weighted complexity. As an application, we compute the weighted complexities of the product of the complete graphs.  相似文献   

19.
In this paper, we calculate the number of spanning trees in prism and antiprism graphs corresponding to the skeleton of a prism and an antiprism. By the electrically equivalent transformations and rules of weighted generating function, we obtain a relationship for the weighted number of spanning trees at the successive two generations. Using the knowledge of difference equations, we derive the analytical expressions for enumeration of spanning trees. In addition, we again calculate the number of spanning trees in Apollonian networks, which shows that this method is simple and effective. Finally we compare the entropy of our networks with other studied networks and find that the entropy of the antiprism graph is larger.  相似文献   

20.
将图的标号问题由每个顶点需要一个标号的情况推广到每个顶点需要多个标号的情况,给出裂变图的概念以及赋权图的L(_(d,d,1)~(0,1,2))-标号的概念,给出R-单位球图对应裂变图的L(_(d,d,1)~(0,1,2))-标号数的一个上界。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号