首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adsorption isotherms of carbon dioxide (CO2), methane (CH4), and nitrogen (N2) on Hβand sodium exchanged β-zeolite (Naβ) were volumetrically measured at 273 and 303 K. The results show that all isotherms were of Brunauer type I and well correlated with Langmuir-Freundlich model. After sodium ions exchange, the adsorption amounts of three adsorbates increased, while the increase magnitude of CO2 adsorption capacity was much higher than that of CH4 and N2. The selectivities of CO2 over CH4 and CO2 over N2 enhanced after sodium exchange. Also, the initial heat of adsorption data implied a stronger interaction of CO2 molecules with Na+ ions in Naβ . These results can be attributed to the larger electrostatic interaction of CO2 with extraframework cations in zeolites. However, Naβ showed a decrease in the selectivity of CH4 over N2, which can be ascribed to the moderate affinity of N2 with Naβ. The variation of isosteric heats of adsorption as a function of loading indicates that the adsorption of CO2 in Naβ presents an energetically heterogeneous profile. On the contrary, the adsorption of CH4 was found to be essentially homogeneous, which suggests the dispersion interaction between CH4 and lattice oxygen atoms, and such interaction does not depend on the exchangeable cations of zeolite.  相似文献   

2.
胺类分子在CO_2的捕获中可以起到选择性提升的作用,本文选择小尺寸的乙二胺分子对具有不饱和金属位点的轻金属铝基金属有机骨架(Al-MOFs)材料MIL-100Al进行改性,利用XRD、N2吸附和FT-IR等对改性材料的结构进行表征,测试了不同浓度的乙二胺改性的MIL-100Al对CO_2和CH4吸附性能。结果表明,与原始的MIL-100Al材料相比,改性后的材料对CO_2吸附量有明显提高,CH4的吸附量却降低,从而进一步提高了材料的CO_2/CH4吸附选择性,提升了吸附分离的效果。  相似文献   

3.
A series of M-substituted hexaaluminates LaMAl11O19-δ (M=Fe, Co, Ni, Mn, and Cu) were prepared and characterized by XRD, XPS, TPR and TGA techniques, respectively. They exhibited different reducibility and catalytic activity for partial oxidation of methane (POM) to synthesis gas. Among the LaMAl11019-δ samples, LaNiAl11O19-δ showed the best catalytic activity for the topic reaction and selectivity for synthesis gas at 780 ℃ for 2 h. The conversion of CH4 was over 99.2%, and the product selectivity for both CO and H2 was above 90.3%.  相似文献   

4.
胺类分子在CO2的捕获中可以起到选择性提升的作用,本文选择小尺寸的乙二胺分子对具有不饱和金属位点的轻金属铝基金属有机骨架(Al-MOFs)材料MIL-100Al进行改性,利用XRD、N2吸附和FT-IR等对改性材料的结构进行表征,测试了不同浓度的乙二胺改性的MIL-100Al对CO2和CH4吸附性能。结果表明,与原始的MIL-100Al材料相比,改性后的材料对CO2吸附量有明显提高,CH4的吸附量却降低,从而进一步提高了材料的CO2/CH4吸附选择性,提升了吸附分离的效果。  相似文献   

5.
In the present study, we successfully prepared two different electrospun polyacrylonitrile (PAN) based-activated carbon nanofiber (ACNF) composites by incorporation of well-distributed Fe2O3 and Co3O4 nanoparticles (NPs). The influence of metal oxide on the structural, morphological, and textural properties of final composites was thoroughly investigated. The results showed that the morphological and textural properties could be easily tuned by changing the metal oxide NPs. Even though, the ACNF composites were not chemically activated by any activation agent, they presented relatively high surface areas (SBET) calculated by Brunauer–Emmett–Teller (BET) equation as 212.21 and 185.12 m2/g for ACNF/Fe2O3 and ACNF/Co3O4 composites, respectively. Furthermore, the ACNF composites were utilized as candidate adsorbents for CO2 and CH4 adsorption. The ACNF/Fe2O3 and ACNF/Co3O4 composites resulted the highest CO2 adsorption capacities of 1.502 and 2.166 mmol/g at 0 °C, respectively, whereas the highest CH4 adsorption capacities were obtained to be 0.516 and 0.661 mmol/g at 0 °C by ACNF/Fe2O3 and ACNF/Co3O4 composites, respectively. The isosteric heats calculated lower than 80 kJ/mol showed that the adsorption processes of CO2 and CH4 were mainly dominated by physical adsorption for both ACNF composites. Our findings indicated that ACNF-metal oxide composites are useful materials for designing of CO2 and CH4 adsorption systems.  相似文献   

6.
Adsorption of CO2 was investigated over a wide range of conditions on a series of mesoporous silica adsorbents comprised of conventional MCM-41, pore-expanded MCM-41 silica (PE-MCM-41) and triamine surface-modified PE-MCM-41 (TRI-PE-MCM-41). The isosteric heat of adsorption, calculated from adsorption isotherms at different temperatures (298–328 K), showed a significant increase in CO2–adsorbent interaction after amine functionnalization of PE-MCM-41, consistent with the high CO2 uptake in the very low range of CO2 concentration. The CO2 adsorption isotherm and kinetics data showed the high potential of TRI-PE-MCM-41 material for CO2 removal in gas purification and separation applications. With TRI-PE-MCM-41, the CO2 selectivity over N2 was drastically improved over a wide range of conditions compared to pure mesoporous silica. Moreover, the adsorption was reversible and fast, and the adsorbent was thermally stable and tolerant to moisture.  相似文献   

7.
Although zeolites such as NaY and 13X adsorb CO2 much more than CO, the adsorption amount of CO2 and CO can be reversed if the zeolites are modified with CuCl. When zeolite NaY or 13X is mixed with CuCl and heated, high CO adsorption selectivity and capacity can be obtained. Isotherms show the adsorbents have CO capacity much higher than CO2. This is because CuCl has dispersed onto the surface of the zeolites to form a monolayer after the heat treatment and the monolayer dispersed CuCl can provide tremendous Cu(I) to selective adsorb CO and inhibit the CO2 adsorption. The monolayer dispersion of CuCl is confirmed by XRD and EXAFS studies. The loading of CuCl on the zeolites has a threshold below which the CuCl forms monolayer after heating and crystalline phase of CuCl can not be detected by XRD. An adsorbent of CuCl/NaY with CuCl content closed to the monolayer capacity shows very high CO selective adsorbability for CO2, N2, H2 and CH4. At temperature higher than room temperature, the adsorbent has even better CO selectivity for CO2. Using the adsorbent, a single-stage 4 beds PSA process, working at 70°C and 0.4 MPa to 0.013 MPa, can obtain CO product with purity >99.5% and yield >85%.  相似文献   

8.
利用溶剂热法合成了不同锂含量的MOF-5(xLi-MOF-5, x=0, 1, 3, 5).在MOF-5结晶过程中,锂离子被合并入其骨架结构中.实验表明,合并入骨架的锂能够改变MOF-5的结构和表面化学性质.不同的xLi-MOF-5能够不同程度降低骨架相互穿插的程度从而导致其吸附分离能力的大幅改变.其中,3Li-MOF-5具有最高的二氧化碳捕获能力(5.47 mmol·g-1),对40% CO2/60% CH4混合气体具有最优吸附选择性.  相似文献   

9.
利用溶剂热法合成了不同锂含量的MOF-5(x Li-MOF-5,x=0,1,3,5)。在MOF-5结晶过程中,锂离子被合并入其骨架结构中。实验表明,合并入骨架的锂能够改变MOF-5的结构和表面化学性质。不同的x Li-MOF-5能够不同程度降低骨架相互穿插的程度从而导致其吸附分离能力的大幅改变。其中,3Li-MOF-5具有最高的二氧化碳捕获能力(5.47 mmol·g-1),对40%CO2/60%CH4混合气体具有最优吸附选择性。  相似文献   

10.
Torlon®, a polyamide–imide polymer, was used for high-pressure CO2 separations, as it can form inter- and intra-chain hydrogen bonding that may provide stability against plasticization. Asymmetric hollow fiber membranes with a defect-free selective skin were successfully formed from Torlon® using a dry–wet spinning process. Dope and spinning parameters were optimized to obtain these fibers, which had CO2/CH4 selectivity of 44 and O2/N2 selectivity of 7.7. These selectivities are about 85% of the intrinsic (dense film) value of 52 for CO2/CH4 and 90% of the intrinsic value of 8.3 for O2/N2, respectively. Based on analyses presented, the reduced selectivities are attributed to substructure resistance rather than actual skin layer defects. Macrovoids, which compromise the strength of the fiber, were reduced by increasing the polymer concentration. The resulting fiber could withstand up to 2000 psi of N2, and a CO2 permeation study indicates that this fiber can perform selective separations under supercritical conditions of 1100 psi of CO2 at 35 °C.  相似文献   

11.
CO2 adsorption in porous carbon materials has attracted great interests for alleviating emission of post-combustion CO2. In this work, a novel nitrogen-doped porous carbon material was fabricated by carbonizing the precursor of melamine-resorcinol-formaldehyde resin/graphene oxide (MR/GO) composites with KOH as the activation agent. Detailed characterization results revealed that the fabricated MR(0.25)/GO-500 porous carbon (0.25 represented the amount of GO added in wt.% and 500 denoted activation temperature in °C) had well-defined pore size distribution, high specific surface area (1264 m2·g−1) and high nitrogen content (6.92 wt.%), which was mainly composed of the pyridinic-N and pyrrolic-N species. Batch adsorption experiments demonstrated that the fabricated MR(0.25)/GO-500 porous carbon delivered excellent CO2 adsorption ability of 5.21 mmol·g−1 at 298.15 K and 500 kPa, and such porous carbon also exhibited fast adsorption kinetics, high selectivity of CO2/N2 and good recyclability. With the inherent microstructure features of high surface area and abundant N adsorption sites species, the MR/GO-derived porous carbon materials offer a potentially promising adsorbent for practical CO2 capture.  相似文献   

12.
Three kinds of activated carbons were prepared using coconut-shells as carbon precursors and characterized by XRD, FT-IR and texture property test. The results indicate that the prepared activated carbons were mainly amorphous and only a few impurity groups were adsorbed on their surfaces. The texture property test reveals that the activated carbons displayed different texture properties, especially the micropore size distribution. The adsorption capacities of the activated carbons were investigated by adsorbing CH4, CO2, N2 and O2 at 25 ?C in the pressure range of 0-200 kPa. The results reveal that all the activated carbons had high CO2 adsorption capacity, one of which had the highest CO2 adsorption value of 2.55 mmol/g at 200 kPa. And the highest adsorption capacity for CH4 of the activated carbons can reach 1.93 mmol/g at 200 kPa. In the pressure range of 0-200 kPa, the adsorption capacities for N2 and O2 were increased linearly with the change of pressure and K-AC is an excellent adsorbent towards the adsorption separation of greenhouse gases.  相似文献   

13.
Solid, polymer membranes fabricated from room-temperature ionic liquid monomers containing oligo(ethylene glycol) or nitrile-terminated alkyl substituents tethered to imidazolium cations were found to exhibit ideal CO2/N2 and CO2/CH4 separation factors significantly greater than those with comparable length n-alkyl substituents, with similar CO2 permeability. Polymers containing these functional groups exhibited CO2/N2 gas separation performance exceeding the “upper bound” of a “Robeson Plot”.  相似文献   

14.
The formation of complexes and disproportionation of nitrogen oxides (NO, N2O) on cationic forms of LTA, FAU, and MOR zeolites was investigated by diffuse-reflectance IR spectroscopy. N2O is adsorbed on the samples under study in the molecular form and the frequencies of the first overtone of the stretching vibrations ν10–2 and the combination bands of the stretching vibrations with other vibrational modes for N2O complexes with cationic sites in zeolites (ν30–1 + ν10–1, ν10–1 + δ0–2) are more significantly influenced by the nature of the zeolite. The presence of several IR bands in the region of 2400–2600 cm−1 (the ν10–1 + δ0–2 transitions) for different zeolite types was explained by the availability of different localization sites for cations in these zeolites. The frequencies in this region also depend on the nature of the cation (its charge and radius). The data can be explained by the specific geometry of the N2O complex formed, presumably two-point adsorption of N2O on a cation and a neighboring oxygen atom of the framework. Adsorption of CO or CH4 on the samples with preliminarily adsorbed N2O at 20–180 °C does not result in any oxidation of these molecules. NO+ and N2O3 species formed by disproportionation of NO are capable of oxidizing CO and CH4 molecules to CO2, whereas NOx is reduced simultaneously to N2 or N2O. The peculiarities in the behavior of cationic forms of different zeolites with respect to adsorbed nitrogen oxides determined by different density and localization of cations have been established.  相似文献   

15.
以间苯二甲醛和三聚氰胺为原料,通过Schiff碱缩合反应合成了密胺基多孔聚合物(POP),经高温炭化后得到富氮微孔炭(NMC).利用N2吸脱附和傅里叶变换红外(FTIR)光谱表征了POP和炭化后产物NMC的结构和组成,与POP相比,NMC的官能团数量减少,比表面积和微孔孔容大幅增加.元素分析表明NMC含氮量高达12.5%(w).采用体积法测定了CO2、CH4和N2在NMC上的单组分吸附平衡等温线,NMC展示出良好的CO2吸附性能,298 K、100 kPa下CO2平衡吸附量可达2.34 mmol·g-1.双位Langmuir(DSL)模型和单位Langmuir(SSL)模型分别较好地描述了CO2、CH4和N2在NMC上的吸附平衡数据,在此基础上,应用理想吸附溶液理论(IAST)预测了双组分混合气在NMC上的吸附等温线,结果表明NMC对CO2-N2和CO2-CH4有非常高的CO2吸附选择性,分别为144.9和12.8.  相似文献   

16.
A series of mesoporous Cu-Zn-Al2O3 materials have been synthesized at ambient temperature and their structure was characterized by XRD, N2 physical adsorption and TPR techniques. Their catalytic applications for the dehydrogenation of 2-butanol to methyl ethyl ketone (MEK) were evaluated in a fixed-bed flow reactor at atmospheric pressure. It is demonstrated from the XRD patterns that both the as-synthesized samples and calcined samples have the typical XRD patterns of meso-structured materials and the results of N2O chemical adsorption showed that Cu was embedded in the framework of the mesoporous materials and homogeneously dispersed in the mesoporous Cu-Zn-Al2O3 materials. The catalytic activity of 2-butanol dehydrogenation was varied in the order of CZA(10)<CZA(CP)<CZA(20)<CZA(30); while the selectivity of MEK was increased in the order of CZA(CP)<CZA(10)<CZA(20)<CZA(30).  相似文献   

17.
The effects of palladium precursors (PdCl2, (NH4)2PdCl4, Pd(NH3)2Cl2, Pd(NO3)2 and Pd(CH3COO)2) on the catalytic properties in the selective oxidation of ethylene to acetic acid have been investigated for 1.0 wt% Pd–30 wt% H4SiW12O40/SiO2. The structures of the catalysts were characterized using X-ray diffraction, N2 adsorption, H2-pulse chemical adsorption, infrared spectrometry of the adsorbed pyridine, H2 temperature-programmed reduction and X-ray photoelectron spectroscopy. The present study demonstrates that the different palladium precursors can lead to the significant changes in the dispersion of palladium. It is found that Pd dispersion decreases as follows: PdCl2 > (NH4)2PdCl4 > Pd(NO3)2 > Pd(NH3)2Cl2 > Pd(C2H3O2)2, which is nearly identical to the catalytic activity. This indicates that the dispersion of palladium plays an important role in the catalytic activity. Furthermore, density of Lewis (L) and Brönsted (B) acid sites are also strongly dependent on the palladium precursors. It is also demonstrated that an effective catalyst should possess a well combination of Brönsted acid sites with dispersion of palladium.  相似文献   

18.
CO2 valorization through chemical reactions attracts significant attention due to the mitigation of greenhouse gas effects. This article covers the catalytic hydrogenation of CO2 to methanol and dimethyl ether using Cu-Ho-Ga containing ZSM-5 and g-Al2O3 at atmospheric pressure and at temperatures of 210 °C and 260 °C using a CO2:H2 feed ratio of 1:3 and 1:9. In addition, the thermodynamic limitations of methanol and DME formation from CO2 was investigated at a temperature range of 100–400 °C. Cu-Ho-Ga/g-Al2O3 catalyst shows the highest formation rate of methanol (90.3 µmolCH3OH/gcat/h ) and DME (13.2 µmolDME/gcat/h) as well as the highest selectivity towards methanol and DME (39.9 %) at 210 °C using a CO2:H2 1:9 feed ratio. In both the thermodynamic analysis and reaction results, the higher concentration of H2 in the feed and lower reaction temperature resulted in higher DME selectivity and lower CO production rates.  相似文献   

19.
Adsorption-based removal of carbon dioxide (CO2) from gas mixtures has demonstrated great potential for solving energy security and environmental sustainability challenges. However, due to similar physicochemical properties between CO2 and other gases as well as the co-adsorption behavior, the selectivity of CO2 is severely limited in currently reported CO2-selective sorbents. To address the challenge, we create a bioinspired design strategy and report a robust, microporous metal–organic framework (MOF) with unprecedented [Mn86] nanocages. Attributed to the existence of unique enzyme-like confined pockets, strong coordination interactions and dipole-dipole interactions are generated for CO2 molecules, resulting in only CO2 molecules fitting in the pocket while other gas molecules are prohibited. Thus, this MOF can selectively remove CO2 from various gas mixtures and show record-high selectivities of CO2/CH4 and CO2/N2 mixtures. Highly efficient CO2/C2H2, CO2/CH4, and CO2/N2 separations are achieved, as verified by experimental breakthrough tests. This work paves a new avenue for the fabrication of adsorbents with high CO2 selectivity and provides important guidance for designing highly effective adsorbents for gas separation.  相似文献   

20.
In this work a combination of static gravimetric and inverse chromatographic techniques is used to study the adsorption and separation of the main synthesis gas components, i.e. CO2, CO, CH4 and H2. The single component adsorption isotherms of CO2, CO, CH4 and H2 on faujasite NaX were measured from 303 K to 473 K and over a large range of pressures (from 0 to 1200 kPa). Breakthrough curves of CO2 and CO and their mixtures were determined at 323 K and 373 K and 100 kPa as an illustrative example. A nice agreement was noticed between the two above-mentioned techniques for single component adsorption. Binary mixture dynamics measurements were compared to the predictions of ideal adsorption solution theory (IAST) via the previously cited single component adsorption data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号