首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of a surface potential gradient on the location and extent of electrochemical reactions was examined using a scanning electrochemical microscope. A linear potential gradient was imposed on the surface of a platinum-coated indium tin oxide electrode by applying two different potential values at the edges of the electrode. The applied potentials were used to control the location and extent of several electrochemical reactions, including the oxidation of Ru(NH3)6(2+), the oxidation of H2, and the oxidation of H2 in the presence of adsorbed CO. Scanning electrochemical mapping of these reactions was achieved by probing the feedback current associated with the oxidation products. The oxidation of Ru(NH3)6(2+) occurred at locations where the applied potential was positive of the formal potential of the Ru(NH3)6(2+/3+) redox couple. The position of this reaction on the surface could be spatially translated by manipulating the terminal potentials. The rate of hydrogen oxidation on the platinum-coated electrode varied spatially in the presence of a potential gradient and correlated with the nature of the electrode surface. High oxidation rates occurred at low potentials, with decreasing rates observed as the potential increased to values where platinum oxides formed. The extent of oxide formation versus position was confirmed with in-situ ellipsometry mapping. In the presence of adsorbed carbon monoxide, a potential gradient created a localized region of high activity for hydrogen oxidation at potentials between where carbon monoxide was adsorbed and platinum oxides formed. The position of this localized region of activity could be readily translated along the surface by changing the terminal potential values. The ability to manipulate electrochemical reactions spatially on a surface has potential application in microscale analytical devices as well as in the discovery and analysis of electrocatalytic systems.  相似文献   

2.
The atomic structure on the metal side of the electrochemical interface depends on the applied electric potential and the nature of the adsorbing species in the electrolyte solution. In this short article, we review some recent results probing surface stress and surface relaxation effects in single-crystal metal electrodes that are driven by potential changes. Both the potential and the structure in the electrolyte layers at the interface alter the metal electronic structure so that the surface in the electrochemical environment is strongly modified from the ultra-high vacuum counterpart. A methodology for linking experimental and theoretical approaches for a fundamental understanding of electrochemical reactions is proposed.  相似文献   

3.
Theoretical simulations on complex electrochemical processes have been developed on the basis of the understanding in electrochemistry, which has benefited from quantum mechanics calculations. This article reviews the recent progress on the theory and applications in electrocatalysis. Two representative reactions, namely water electrolysis and oxygen reduction, are selected to illustrate how the theoretical methods are applied to electrocatalytic reactions. The microscopic nature of these electrochemical reactions under the applied potentials is described and the understanding of the reactions is summarized. The thermodynamics and kinetics of the electrochemical reactions affected by the interplay of the electrochemical potential, the bonding strength and the local surface structure are addressed at the atomic level.  相似文献   

4.
Electrochemical treatment of tumours implies that tumour tissue is treated with a direct current. During electrolysis, electrical energy is converted to chemical energy through electrochemical reactions at the electrodes. The anode is preferably placed in the tumour and the cathode in a blood vessel or in fresh surrounding tissue. The main electrochemical reactions are chlorine and oxygen evolution, at the anode, if platinum is used. Hydrogen evolution takes place at the cathode. The aim of this paper is to show how mathematical modelling can be used as a tool for defining and optimising the operating conditions of electrochemical treatment (ET) of tumours. A simplified mathematical model is presented for direct current treatment of tumours, focusing on tissue surrounding a spherical platinum anode. The tissue is treated as an aqueous solution of sodium chloride and only the major electrochemical reactions are considered. The model is based on transport equations of ionic species in dilute solutions. Kinetic expressions for the electrochemical reactions, at the anode surface, are introduced. Inputs to the model are the applied current density, and sizes of the anode and electrolyte domain. Concentration profiles of the ionic species and potential distribution, as a function of time, are calculated. In addition, current yields of the anode reactions are obtained from the model.  相似文献   

5.
Adsorption of cetyl trimethyl ammonium bromide (CTAB), and two commercial inhibitor base chemicals; an oleic imidazoline salt (OI) and a phosphate ester (PE), onto high purity, corroding iron particles was studied by zeta potential measurements in a 0.1 Wt% sodium chloride (NaCl) solution under 1 bar CO2 at 22°C. The particles were exposed to the inhibitor compounds for 24 hours before measurements were done. The results show that the measured zeta potential in the absence of inhibitor is zero at both pH 4.0 ± 0.2 and pH 5.8 ± 0.2. It is concluded that this might be caused by the electrochemical reactions occurring at the steel surface when placed in an electrical field. When adding inhibitor, which slows the electrochemical reactions at the steel surface, the zeta potential moves away from zero and an adsorption isotherm is obtained for all three inhibitors. The measured potential is probably a mixed potential where the apparent potential measured is a combination of the potential at the shear plane and a contribution form the electrochemical reactions occurring on the surface.  相似文献   

6.
A theory for electrochemical electron-transfer reactions involving surface states as intermediates is developed. The electronic interactions are treated by perturbation theory. The electron transfer takes place by resonance exchange at a fixed solvent configuration on the reaction hypersurface, which is defined by the intersection of the three potential energy surfaces. An explicit expression for the reaction rate is derived. The relation of this work to other theories and to experiments is discussed.  相似文献   

7.
In this paper, the electrochemical impedance spectroscopy (EIS) mathematical model of TiO2 photoelectrocatalytic (PEC) reactions involving charge transfer and recombination through surface states was developed. The model was used to study the kinetics of photoelectrocatalytic decomposition of salicylic acid. The model simulation results show that the appearance of two distinguishable semicircles in the EIS response depends on the charging of surface state and light intensity. The experimental results demonstrated that similar phenomena to the theoretical simulation results. The model provides a way to obtain the rate constants for the photoelectrochemical reactions of surface states mediating charge transfer and recombination. The applied potential changes not only the recombination rate constant but also the charge-transfer rate constant. Moreover, the experimental EIS results here and those previous published on PEC degradation reactions can be explained by the present model satisfactorily. The relevance of surface states was discussed briefly. The results demonstrated that EIS is a powerful tool for studying the kinetics of PEC decomposition of organic pollutants on TiO2 electrodes.  相似文献   

8.
Heterogeneous electrocatalysis involves chemical reactions occurring in an electrochemical cell at the surface of an electrode, that is, at the electrochemical interface. The reaction rates are set by electrode surface structure, electrode potential, and can be adjusted by other variables specific to the field of electrochemistry. In contrast to reactions occurring at the solid/gas interface, electron transfer usually takes place at the electrochemical interface, which may lead to new product formation (in catalytic electrosynthesis), or allows one to harvest electrons in fuel cells. In the Opinion, papers describing catalytic materials used in a proton exchange membrane fuel cell are highlighted, and those related to recently developed research methodology of heterogeneous electrocatalysis receive a particular emphasis. Conclusions are made as to the future development of the field.  相似文献   

9.
The potential dependence of the steady-state current at a channel electrode has been calculated approximately. Six regions of behavior can be described from a consideration of the characteristic times of diffusion, fluid flow and electrochemical reaction. Wave shapes and half-wave potential shifts are as expected for amperometric cells under all values of the heterogeneous reaction rate constant, and for reversible electrochemical reactions in a coulometric cell. The wave adopts a peculiar shape for irreversible reactions at a coulometric electrode. This is caused by the inapplicability of the concept of mass transfer control in these systems.  相似文献   

10.
Analytical applications of electrochemiluminescence: an overview   总被引:1,自引:0,他引:1  
The chemical transformations of electrogenerated ion-radicals of a number of complex organic compounds may be accompanied by emission of photons. An electrochemiluminescence (ECL) quantum contains information both on the kinetics of the heterogeneous electrode processes and on the subsequent homogeneous chemical reactions in the solution. Application of ECL to solution analysis provides advantages in comparison to electrochemical methods. Using ECL for electrode surface analysis allows information to be obtained on the rate of an electrochemical process simultaneously at all points of the electrode under analysis in real time, and that is the main difference between this method and the point-by-point testing specific to electrochemical methods. The potential of ECL for analytical chemistry is examined concerning the homogeneous ECL-analysis of solutions and the heterogeneous ECL-analysis of electrode surfaces. Received: 6 April 2000 / Revised: 23 June 2000 / Accepted: 27 June 2000  相似文献   

11.
《Electroanalysis》2002,14(23):1635-1643
A mathematical model for the CE mechanism in which the chemical together with the electrochemical reactions are quasi‐reversible at the surface of spherical macro and micro‐electrodes is presented for the case of square‐wave voltammetry. The analysis of voltammometric responses considers the influence of rate and equilibrium constants, together with the electrode radius, and their dependence on the square‐wave frequency (f). Both kinetics and the sphericity effect act synergistically on the electrochemical response. Also, the apparent electrode sphericity and the reversibility of the chemical as well as the electrochemical reactions are jointly affected by the variation of f. Disregarding the sphericity contribution in the calculation of kinetic parameters at a microelectrode may introduce errors even higher than one order of magnitude. The model allows the analysis of a more realistic and complex electrochemical system that requires not only the dependence of experimental responses on f, but also their fit with theoretical voltammograms, in order to provide some useful mechanistic information. Finally, concentration profiles are also studied to realize how the chemical contribution is buffering the absences of oxidized species at the electrode surface, and how those profiles are modified for the case of spherical macro and micro‐electrodes.  相似文献   

12.
The mechanism of oxygen electroreduction on polycrystalline gold is studied in the acidic medium. Hydrogen peroxide is the main reaction product. However, two potential regions can be singled out in which the oxygen electroreduction reaction proceeds by different pathways. The first region is the potential interval close to the steady-state potential. Here, the oxygen electroreduction virtually completely produces peroxide. The second interval is the potential range of considerable cathodic polarization values. In this case, peroxide can be reduced to water. The low energy of hydrogen peroxide adsorption on gold determines the considerable overpotential of peroxide reduction. It is shown that on the gold electrode surface, the catalytic decomposition of peroxide occurs. The use of the method of electrochemical impedance spectroscopy allows the peculiarities of the oxygen reaction associated with hydrogen peroxide transformations to be revealed. In the acidic medium, the reactions of consecutive reduction of oxygen through the intermediate formation of hydrogen peroxide and the catalytic decomposition of the intermediate product are shown to proceed simultaneously. The ratio of rate constants of electrochemical stages depends on the potential. The chemical decomposition is observed both near the steady-state potential and in the cathodic region where considerable electrochemical reduction of peroxide occurs.  相似文献   

13.
The presence of electrochemical reactions occurring in an electrospray processes at the point where the current enters the liquid is discussed since the early 1990's. This current transfer to the liquid results in oxidation or reduction of either electrolyte species in the liquid sprayed or of the electrode material in contact with the liquid. As a result, new chemical species are generated. These products of the electrochemical reaction might be detected as altered species in mass spectra; they might be volatile and not recognized at all or accumulate on the electrode surface and cause cross contamination later on. In other cases, it might happen that the products of the electrochemical reactions are the only detectable species formed from an otherwise nondetectable analyte. An electrospray setup in which electrochemical reactions do not interfere with the analyte under investigation excludes the electrochemical reaction as source of sample contamination and sample altering and may serve as reference setup for experiments focused on the electrochemical reaction itself. We present a simple and inexpensive current coupling approach and specify operation conditions for which any impact of the electrochemical reaction on the sample under investigation is inherently excluded. On the basis of a practical example, we show the impact of the electrochemical reaction on sample composition and demonstrate the benefit of using the proposed current coupling method. Because of the obvious benefit of this method and its simple realization, it has the potential to be employed as standard feeding approach, especially for electrosprays operated at small flow rates.  相似文献   

14.
The scanning electrochemical microscope (SECM) combined with a computerized tensile stage was employed to measure the kinetics of electron transfer (ET) reactions at stainless steel electrodes as a function of the applied mechanical stress. Reproducible current versus distance curves were obtained for different values of the tensile stress applied to a stainless steel (T-316) sample by using hexaammineruthenium as a redox mediator. The dependences of the extracted rate constant on substrate potential (i.e., Tafel plots, ln k versus E) were linear, in agreement with classical electrochemical theory. Possible origins of the stress effect on the ET rate and its implications for studies of stress corrosion cracking are discussed.  相似文献   

15.
Armstrong FA  Camba R  Heering HA  Hirst J  Jeuken LJ  Jones AK  Léger C  McEvoy JP 《Faraday discussions》2000,(116):191-203; discussion 257-68
A wealth of information on the reactions of redox-active sites in proteins can be obtained by voltammetric studies in which the protein sample is arranged as a layer on an electrode surface. By carrying out cyclic voltammetry over a wide range of scan rates and exploiting the ability to poise or pulse the electrode potential between cycles, data are obtained that are conveniently (albeit simplistically) analysed in terms of plots of peak potentials against scan rate. A simple reversible electron-transfer process gives rise to a 'trumpet'-shaped plot because the oxidation and reduction peaks separate increasingly at high scan rate; the electrochemical kinetics are then determined by fitting to Butler-Volmer or Marcus models. Much more interesting though are the ways in which this 'trumpet plot' is altered, often dramatically, when electron transfer is coupled to biologically important processes such as proton transfer, ligand exchange, or a change in conformation. It is then possible to derive particularly detailed information on the kinetics, energetics and mechanism of reactions that may not revealed clearly or even at all by other methods. In order to interpret the voltammetry of coupled systems, it is important to be able to define 'ideal behaviour' for systems that are expected to show simple and uncoupled electron transfer. Accordingly, this paper describes results we have obtained for several proteins that are expected to show such behaviour, and compares these results with theoretical predictions.  相似文献   

16.
A knowledge of the structure of the double layer is essential in the investigation of reactions at an inierface between two dissimilar media. This aspect is briefly presented in respect to charge separation and potential distribution in the interfacial region. The types of reactions that can occur at solid-solution interfaces (electron transfer, electrosorption, and electro-phoretic deposition) are discussed. The electrokinetic methods for determination of surface charge characteristics of insulator materials in electrodes are reviewed. Thrombosis on the blood vessel wall and on prosthetic materials is an interfacial chemical reaction. The evidence for an electrochemical mechanism of thrombosis on conducting materials is outlined. Under normal conditions, the blood vessel wall is negatively charged. Injury or atherosclerosis makes it less negatively or even positively charged. With decrease of pH, there is an increase in the surface charge density of the blood vessel wall with an isoelectric point at a pH of about 4.5. Materials treated chemically so as to introduce negatively charged groups (sulfonate, carboxylate, heparinized, anionic ioplex) tend to be antithrombogenic while positively charged surfaces (cationic Ioplex, quarternary ammonium group) are thrombogenic. A useful criterion for antithrombogenic polymer materials is that their surfaces must have a uniform negative charge.  相似文献   

17.
The development of new electrocatalysts with the aim of enhancing the rate of electrochemical reactions has been a long-term goal of electrochemists. In part, this is due to the great importance of electrocatalysts in energy generation and environmental concerns. In this review, various methods of the preparation of nanostructured electrocatalysts and their applications after attachment to the electrode surface are described. Diazonium chemistry has been extensively used for the preparation and attachment of nanostructured electrocatalysts and this review thus describes the recent developments and applications of this chemistry in electrocatalysis. The preparation of nanostructured electrocatalysts including grafted molecular films and metal nanoparticles physically adsorbed on electrode surfaces and those attached to the surface by molecular links using diazonium chemistry is reviewed. Two methods for the attachment of nanoparticles by simple physical adsorption and by electrochemical deposition on molecular films are described and the electrochemical response of nanostructured electrocatalysts for some of the most common electrochemical reactions is discussed.  相似文献   

18.
Experimental and theoretical results are presented on increases in the rate of electrochemical reactions, which are achieved by replacing a small fraction of the original anions in solution with more inhibiting ones. The rate of the electrochemical oxidation of formic acid was substantially increased by replacing a small amount of the supporting electrolyte, perchloric acid, with either sulfuric acid or tetrafluoroboric acid. The largest increases were achieved by substituting mixtures of the last two acids. A theoretical analysis of an electrochemical reaction coupled to anion adsorption is presented. The analysis reveals that, if repulsive forces of appropriate strength form between unlike surface anions, replacing a fraction of the original anions in solution with one or two kinds of more inhibiting anions can increase the rate of reaction.  相似文献   

19.
The self-assembly of octanethiol (OT) on the surface of a polycrystalline gold electrode in aqueous and aqueous ethanol thiol-containing (1 × 10–4 М) 0.1 М NaClO4 solutions was studied. The blocking properties and electrochemical stability of monolayer OT films were studied by chronopotentiometry during OT adsorption under the open circuit conditions (chronoamperometry at a fixed potential) combined with cyclic voltammetry for modified Au/OT electrodes. It was found from the change in the rate of electrochemical reactions in the range of monolayer stability potentials that in aqueous media, compact insulating OT monolayer films formed at a open circuit potential within ~100 s, and the shift of the adsorption potential toward negative values (to–0.6 V) allowed a considerable decrease in the monolayer self-assembly time. The potential shift toward higher negative values (–0.9 V) leads to a removal of OT from the electrode surface during the reductive desorption, with a multipeak current signal recorded on the voltammograms. A transition from aqueous to aqueous ethanol solutions accelerated the formation of an insulating OT monolayer (≈6 s) and led to a change in the shape of the desorption current peak, whose value was almost independent of the ОТ accumulation time and potential.  相似文献   

20.
The equation of the linear potential sweep voltammogram is derived for any degree of reversibility of the electrochemical reaction for the following methods: surface voltammetry when both the oxidized and the reduced forms are strongly adsorbed, and a Langmuir isotherm is obeyed, thin layer voltammetry, and linear potential sweep coulometry. The results are expressed in one mathematical form valid for the three cases. The transfer coefficient and the rate constant of the electrochemical reaction can be deduced from an experimental study of the variations of the peak potentials as a function of the sweep rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号