首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The intrinsic methylating abilities of the known biological methylating zwitterionic agents, dimethylsulfonioacetate (DMSA), (CH(3))(2)S?CH(2)CO(2)(-) (1) and glycine betaine (GB), (CH(3))(3)N?CH(2)CO(2)(-) (2), have been examined via a range of gas phase experiments involving collision-induced dissociation (CID) of their proton-bound homo- and heterodimers, including those containing the amino acid arginine. The relative yields of the products of methyl cation transfer are consistent in all cases and show that protonated DMSA is a more potent methylating agent than protonated GB. Since methylation can occur at more than one site in arginine, the [M+CH(3)](+) ion of arginine, formed from the heterocluster [DMSA+Arg+H](+), was subject to an additional stage of CID. The resultant CID spectrum is virtually identical to that of an authentic sample of protonated arginine-O-methyl ester but is significantly different to that of an authentic sample of protonated N(G)-methyl arginine. This suggests that methylation has occurred within a salt bridge complex of [DMSA+Arg+H](+), in which the arginine exists in the zwitterionic form. Finally, density functional theory calculations on the model salts, (CH(3)CO(2)(-))[(CH(3))(3)S(+)] and (CH(3)CO(2)(-))[(CH(3))(4)N(+)], show that methylation of CH(3)CO(2)(-) by (CH(3))(3)S(+) is both kinetically and thermodynamically preferred over methylation by (CH(3))(4)N(+).  相似文献   

2.
The fixed charge zwitterionic sulfur betaines dimethylsulfonioacetate (DMSA) (CH(3))(2)S(+)CH(2)CO(2)(-) and dimethylsulfoniopropionate (DMSP) (CH(3))(2)S(+)(CH(2))(2)CO(2)(-) have been synthesized and the structures of their protonated salts (CH(3))(2)S(+)CH(2)CO(2)H···Cl(-) [DMSA.HCl] and (CH(3))(2)S(+)(CH(2))(2)CO(2)H···Pcr(-) [DMSP.HPcr] (where Pcr = picrate) have been characterized using X-ray crystallography. The unimolecular chemistry of the [M+H](+) of these betaines was studied using two techniques; collision-induced dissociation (CID) and electron-induced dissociation (EID) in a hybrid linear ion trap Fourier transform ion cyclotron resonance mass spectrometer. Results from the CID study show a richer series of fragmentation reactions for the shorter chain betaine and contrasting main fragmentation pathways. Thus while (CH(3))(2)S(+)(CH(2))(2)CO(2)H fragments via a neighbouring group reaction to generate (CH(3))(2)S(+)H and the neutral lactone as the most abundant fragmentation channel, (CH(3))(2)S(+)CH(2)CO(2)H fragments via a 1,2 elimination reaction to generate CH(3)S(+)=CH(2) as the most abundant fragment ion. To gain insights into these fragmentation reactions, DFT calculations were carried out at the B3LYP/6-311++G(2d,p) level of theory. For (CH(3))(2)S(+)CH(2)CO(2)H, the lowest energy pathway yields CH(3)S(+)=CH(2)via a six-membered transition state. The two fragment ions observed in CID of (CH(3))(2)S(+)(CH(2))(2)CO(2)H are shown to share the same transition state and ion-molecule complex forming either (CH(3))(2)S(+)H or (CH(2))(2)CO(2)H(+). Finally, EID shows a rich and relatively similar fragmentation channels for both protonated betaines, with radical cleavages being observed, including loss of ˙CH(3).  相似文献   

3.
Results of a detailed study on electron interactions with nitromethane (CH(3)NO(2)) embedded in helium nanodroplets are reported. Anionic and cationic products formed are analysed by mass spectrometry. When the doped helium droplets are irradiated with low-energy electrons of about 2 eV kinetic energy, exclusively parent cluster anions (CH(3)NO(2))(n)(-) are formed. At 8.5 eV, three anion cluster series are observed, i.e., (CH(3)NO(2))(n)(-), [(CH(3)NO(2))(n)-H](-), and (CH(3)NO(2))(n)NO(2)(-), the latter being the most abundant. The results obtained for anions are compared with previous electron attachment studies with bare nitromethane and nitromethane condensed on a surface. The cation chemistry (induced by electron ionization of the helium matrix at 70 eV and subsequent charge transfer from He(+) to the dopant cluster) is dominated by production of methylated and protonated nitromethane clusters, (CH(3)NO(2))(n)CH(3)(+) and (CH(3)NO(2))(n)H(+).  相似文献   

4.
The magic number behavior of ((CH(3))(3)N)(n)-H(+)-H(2)O clusters at n = 3 is investigated by applying infrared spectroscopy to the clusters of n = 1-3. Structures of these clusters are determined in conjunction with density functional theory calculations. Dissociation channels upon infrared excitation are also measured, and their correlation with the cluster structures is examined. It is demonstrated that the magic number cluster has a closed-shell structure, in which the water moiety is surrounded by three (CH(3))(3)N molecules. The ion core (protonated site) of the clusters is found to be (CH(3))(3)NH(+) for n = 1-3, but coexistence of an isomer of the H(3)O(+) ion core cannot be ruled out for n = 3. Large rearrangement of the cluster structures of n = 2 and 3 before dissociation, which has been suggested in the mass spectrometric studies, is confirmed on the basis of the structure determination by infrared spectroscopy.  相似文献   

5.
A new type of double-butterfly [[Fe(2)(mu-CO)(CO)(6)](2)(mu-SZS-mu)](2-) (3), a dianion that has two mu-CO ligands, has been synthesized from dithiol HSZSH (Z=(CH(2))(4), CH(2)(CH(2)OCH(2))(1-3)CH(2)), [Fe(3)(CO)(12)], and Et(3)N in a molar ratio of 1:2:2 at room temperature. Interestingly, the in situ reactions of dianions 3 with various electrophiles affords a series of novel linear and macrocyclic butterfly Fe/E (E=S, Se) cluster complexes. For instance, while reactions of 3 with PhC(O)Cl and Ph(2)PCl give linear clusters [[Fe(2)(mu-PhCO)(CO)(6)](2)(mu-SZS-mu)] (4 a,b: Z=CH(2)(CH(2)OCH(2))(2,3)CH(2)) and [[Fe(2)(mu-Ph(2)P)(CO)(6)](2)(mu-SZS-mu)] (5 a,b: Z=CH(2)(CH(2)OCH(2))(2,3)CH(2)), reactions with CS(2) followed by treatment with monohalides RX or dihalides X-Y-X give both linear clusters [[Fe(2)(mu-RCS(2))(CO)(6)](2)(mu-SZS-mu)] (6 a-e: Z=CH(2)(CH(2)OCH(2))(1,2)CH(2); R=Me, PhCH(2), FeCp(CO)(2)) and macrocyclic clusters [[Fe(2)(CO)(6)](2)(mu-SZS-mu)(mu-CS(2)YCS(2)-mu)] (7 a-e: Z=(CH(2))(4), CH(2)(CH(2)OCH(2))(1-3)CH(2); Y=(CH(2))(2-4), 1,3,5-Me(CH(2))(2)C(6)H(3), 1,4-(CH(2))(2)C(6)H(4)). In addition, reactions of dianions 3 with [Fe(2)(mu-S(2))(CO)(6)] followed by treatment with RX or X-Y-X give linear clusters [[[Fe(2)(CO)(6)](2)(mu-RS)(mu(4)-S)](2)(mu-SZS-mu)] (8 a-c: Z=CH(2)(CH(2)OCH(2))(1,2)CH(2); R=Me, PhCH(2)) and macrocyclic clusters [[[Fe(2)(CO)(6)](2)(mu(4)-S)](2)(mu-SYS-mu)(mu-SZS-mu)] (9 a,b: Z=CH(2)(CH(2)OCH(2))(2,3)CH(2); Y=(CH(2))(4)), and reactions with SeCl(2) afford macrocycles [[Fe(2)(CO)(6)](2)(mu(4)-Se)(mu-SZS-mu)] (10 d: Z=CH(2)(CH(2)OCH(2))(3)CH(2)) and [[[Fe(2)(CO)(6)](2)(mu(4)-Se)](2)(mu-SZS-mu)(2)] (11 a-d: Z=(CH(2))(4), CH(2)(CH(2)OCH(2))(1-3)CH(2)). Production pathways have been suggested; these involve initial nucleophilic attacks by the Fe-centered dianions 3 at the corresponding electrophiles. All the products are new and have been characterized by combustion analysis and spectroscopy, and by X-ray diffraction techniques for 6 c, 7 d, 9 b, 10 d, and 11 c in particular. X-ray diffraction analyses revealed that the double-butterfly cluster core Fe(4)S(2)Se in 10 d is severely distorted in comparison to that in 11 c. In view of the Z chains in 10 a-c being shorter than the chain in 10 d, the double cluster core Fe(4)S(2)Se in 10 a-c would be expected to be even more severely distorted, a possible reason for why 10 a-c could not be formed.  相似文献   

6.
The reactions of [NEt(4)](2)[Ni(6)(CO)(12)] with miscellaneous carbon halides (e.g. CCl(4), C(4)Cl(6)) in CH(2)Cl(2) have been extensively investigated particularly focusing on the stoichiometric ratio of the reagents and reaction temperature. This allowed the preparation of the previously known acetylide clusters [Ni(16)(C(2))(2)(CO)(23)](4-), [HNi(25)(C(2))(4)(CO)(32)](3-) and [Ni(22)(C(2))(4)(CO)(28)Cl](3-), as well as isolation and full characterisation of the closely related [Ni(17)(C(2))(2)(CO)(24)](4-) and [Ni(25)(C(2))(4)(CO)(32)](4-) tetraanions. From a structural point of view, all these clusters are based on a Ni(16) square orthobicupola which contain interstitial C(2), Ni(η(2)-C(2))(4) or Ni(2)(μ-η(2)-C(2))(4) moieties, displaying rather short C-C bonds. Electrochemical studies reveal that all these species undergo different redox processes, even if their stability is rather limited. This is corroborated by an extensive analysis of the interaction between interstitial C(2) acetylide units and the metal cluster cage by Extended Huckel Molecular Orbital (EHMO) calculations, which indicates that tightly bonded C-C units are less effective than isolated C-atoms in stabilising the cluster cage.  相似文献   

7.
We report the ionic photoproducts produced following photoexcitation of mass selected IBr(-)(CO(2))(n), n=0-14, cluster ions at 790 and 355 nm. These wavelengths provide single state excitation to two dissociative states, corresponding to the A(') (2)Pi(1/2) and B 2 (2)Sigma(1/2) (+) states of the IBr(-) chromophore. Excitation of these states in IBr(-) leads to production of I(-)+Br and Br(-)+I( *), respectively. Potential energy curves for the six lowest electronic states of IBr(-) are calculated, together with structures for IBr(-)(CO(2))(n), n=1-14. Translational energy release measurements on photodissociated IBr(-) determine the I-Br(-) bond strength to be 1.10+/-0.04 eV; related measurements characterize the A(') (2)Pi(1/2)<--X (2)Sigma(1/2) (+) absorption band. Photodissociation product distributions are measured as a function of cluster size following excitation to the A(') (2)Pi(1/2) and B 2 (2)Sigma(1/2) (+) states. The solvent is shown to drive processes such as spin-orbit relaxation, charge transfer, recombination, and vibrational relaxation on the ground electronic state. Following excitation to the A(') (2)Pi(1/2) electronic state, IBr(-)(CO(2))(n) exhibits size-dependent cage fractions remarkably similar to those observed for I(2) (-)(CO(2))(n). In contrast, excitation to the B 2 (2)Sigma(1/2) (+) state shows extensive trapping in excited states that dominates the recombination behavior for all cluster sizes we investigated. Finally, a pump-probe experiment on IBr(-)(CO(2))(8) determines the time required for recombination on the ground state following excitation to the A(') state. While the photofragmentation experiments establish 100% recombination in the ground electronic state for this and larger IBr(-) cluster ions, the time required for recombination is found to be approximately 5 ns, some three orders of magnitude longer than observed for the analogous I(2) (-) cluster ion. Comparisons are made with similar experiments carried out on I(2) (-)(CO(2))(n) and ICl(-)(CO(2))(n) cluster ions.  相似文献   

8.
A joint threshold photoelectron photoion coincidence spectrometry (TPEPICO) and collision-induced dissociation (CID) study on the thermochemistry of Co(CO)(2)NOPR(3), R = CH(3) (Me) and C(2)H(5) (Et), complexes is presented. Adiabatic ionization energies of 7.36 +/- 0.04 and 7.24 +/- 0.04 eV, respectively, were extracted from scans of the total ion and threshold electron signals. In the TPEPICO study, the following 0 K onsets were determined for the various fragment ions: CoCONOPMe(3)(+), 8.30 +/- 0.05 eV; CoNOPMe(3)(+), 9.11 +/- 0.05 eV; CoPMe(3)(+) 10.80 +/- 0.05 eV; CoCONOPEt(3)(+), 8.14 +/- 0.05 eV; CoNOPEt(3)(+), 8.92 +/- 0.05 eV; and CoPEt(3)(+), 10.66 +/- 0.05 eV. These onsets were combined with the Co(+)-PR(3) (R = CH(3) and C(2)H(5)) bond dissociation energies of 2.88 +/- 0.11 and 3.51 +/- 0.17 eV, obtained from the TCID experiments, to derive the heats of formation of the neutral and ionic species. Thus, the Co(CO)(2)NOPR(3) (R = CH(3) and C(2)H(5)) 0 K heats of formation were found to be -350 +/- 13 and -376 +/- 18 kJ x mol(-)(1), respectively. These heats of formation were combined with the published heat of formation of Co(CO)(3)NO to determine the substitution enthalpies of the carbonyl to phosphine substitution reactions. Room-temperature values of the heats of formation are also given using the calculated harmonic vibrational frequencies. Analysis of the TCID experimental results provides indirectly the adiabatic ionization energies of the free phosphine ligands, P(CH(3))(3) and P(C(2)H(5))(3), of 7.83 +/- 0.03 and 7.50 +/- 0.03 eV, respectively.  相似文献   

9.
The photochemistry of mass selected CO(2) (-)(H2O)(m), m=2-40 cluster anions is investigated using 266 nm photofragment spectroscopy and theoretical calculations. Similar to the previous 355 nm experiment [Habteyes et al., Chem. Phys. Lett. 424, 268 (2006)], the fragmentation at 266 nm yields two types of anionic products: O(-)(H2O)(m-k) (core-dissociation products) and CO(2) (-)(H2O)(m-k) (solvent-evaporation products). Despite the same product types, different electronic transitions and dissociation mechanisms are implicated at 355 and 266 nm. The 355 nm dissociation is initiated by excitation to the first excited electronic state of the CO(2) (-) cluster core, the 1 (2)B(1)(2A") state, and proceeds via a glancing Renner-Teller intersection with the ground electronic state at a linear geometry. The 266 nm dissociation involves the second excited electronic state of CO(2) (-), the 2 (2)A(1)(2A') state, which exhibits a conical intersection with the 3 (2)B(2)(A') state at a bent geometry. The asymptotic O(-) based products are believed to be formed via this 3 (2)B(2)(A') state. By analyzing the fragmentation results, the bond dissociation energy of CO(2) (-) to O(-)+CO in hydrated clusters (m> or =20) is estimated as 2.49 eV, compared to 3.46 eV for bare CO(2) (-). The enthalpy of evaporation of one water molecule from asymptotically large CO(2) (-)(H(2)O)(m) clusters is determined to be 0.466+/-0.001 eV (45.0+/-0.1 kJ/mol). This result compares very favorably with the heat of evaporation of bulk water, 0.456 eV (43.98 kJ/mol).  相似文献   

10.
The mass-selected [(CO(2))(2)(H(2)O)(m)](-) cluster anions are studied using a combination of photoelectron imaging and photofragment mass spectroscopy at 355 nm. Photoelectron imaging studies are carried out on the mass-selected parent cluster anions in the m=2-6 size range; photofragmentation results are presented for m=3-11. While the photoelectron images suggest possible coexistence of the CO(2) (-)(H(2)O)(m)CO(2) and (O(2)CCO(2))(-)(H(2)O)(m) parent cluster structures, particularly for m=2 and 3, only the CO(2) (-) based clusters are both required and sufficient to explain all fragmentation pathways for m>/=3. Three types of anionic photofragments are observed: CO(2) (-)(H(2)O)(k), O(-)(H(2)O)(k), and CO(3) (-)(H(2)O)(k), k6) is attributed to hindrance from the H(2)O molecules.  相似文献   

11.
The photoionization and photodissociation of L-valine are studied by tunable synchrotron vacuum ultraviolet photoionization mass spectrometry at the photon energy of 13 eV. The ionization energy of L-valine and the appearance energies of major fragments are measured by the photoionization efficiency spectrum in the photon energy range of 8-11 eV. Possible formation pathways of the major fragments, NH(2)CHC(OH)(2)(+) (m/z=75), NH(2)(CH(3))(2)(CH)(2)(+) (m/z=72) and NH(2)CHCO(+) (m/z=57), are discussed in detail with the theoretical calculations at the B3LYP/6-31++G (d, p) level. Hydrogen migration is considered as the key way for the formation of NH(2)CHC(OH)(2)(+) (m/z=75) and NH(2)CHCO(+) (m/z=57). Furthermore, other fragments, NH(2)CHCOOH(+) (m/z=74), (CH(3))(2)(CH)(2)(+) (m/z=56), C(4)H(7)(+) (m/z=55), NH(2)CHOH(+) (m/z=46), NH(2)CH(2)(+) (m/z=30) and m/z=18, species are also briefly described.  相似文献   

12.
The dissociation dynamics of Sn(CH(3))(4)(+), Sn(CH(3))(3)Cl(+), and Sn(CH(3))(3)Br(+) were investigated by threshold photoelectron photoion spectrometry using an electron imaging apparatus (iPEPICO) at the Swiss Light Source. The tetramethyltin ion was found to dissociate via Sn(CH(3))(4)(+) → Sn(CH(3))(3)(+) + CH(3) → Sn(CH(3))(2)(+) + 2CH(3), while the trimethyltin halide ions dissociated via methyl loss at low energies, and a competitive halogen loss at somewhat higher energies. The 0 K methyl loss onset for the three ions was found to be 9.410 ± 0.020 eV, 10.058 ± 0.020 eV, and 9.961 ± 0.020 eV, respectively. Statistical theory could not reproduce the observed onsets for the halogen loss steps in the halotrimethyltin ions. The halide loss signal as a function energy mimicked the excited state threshold photoelectron spectrum, from which we conclude that the halide loss from these ions takes place on an isolated excited state potential energy surface, which we describe by time dependent density functional calculations. The sequential loss of a second methyl group in the Sn(CH(3))(4)(+) ion, observed at about 3 eV higher energies than the first one, is also partially non-statistical. The derived product energy distribution resulting from the loss of the first methyl group is two-component with about 50% being statistical and the remainder associated with high translational energy products that peak at 2 eV. Time dependent DFT calculations show that a dissociative ?B state lies in the vicinity of the experimental measurements. We thus propose that 50% of the Sn(CH(3))(4)(+) ions produced in this energy range internally convert to the ?X state, on which they dissociate statistically, while the remainder dissociate directly from the repulsive ?B state leading to high kinetic energy products.  相似文献   

13.
We report the vibrational predissociation spectrum of C(5)H(5)N-CO(2)(-), a radical anion which is closely related to the key intermediates postulated to control activation of CO(2) in photoelectrocatalysis with pyridine (Py). The anion is prepared by the reaction of Py vapor with (CO(2))(m)(-) clusters carried out in an ionized, supersonic entrainment ion source. Comparison with the results of harmonic frequency calculations establishes that this species is a covalently bound molecular anion derived from the corresponding carbamate, C(5)H(5)N-CO(2)(-) (H(+)). These results confirm the structural assignment inferred in an earlier analysis of the cluster distributions and photoelectron spectra of the mixed Py(m)(CO(2))(n)(-) complexes [J. Chem. Phys. 2000, 113 (2), 596-601]. The spectra of the (CO(2))(m)(-) (m = 5 and 7) clusters are presented for the first time in the lower energy range (1000-2400 cm(-1)), which reveal several of the fundamental modes that had only been characterized previously by their overtones and combination bands. Comparison of these new spectra with those displayed by Py(CO(2))(n)(-) suggests that a small fraction of the Py(CO(2))(n)(-) ions are trapped entrance channel reaction intermediates in which the charge remains localized on the (CO(2))(m)(-) part of the cluster.  相似文献   

14.
By subtly varying crystallization conditions, four distinct cadmium acetate coordination networks with unit cell formulas Cd(87)(H(2)O)(36)(EtOH)(18)(OH)(12)(CH(3)CO(2))(162) (1), Cd(87)(H(2)O)(72)(OH)(12)(CH(3)CO(2))(162) (2), Cd(10)(H(2)O)(6)(OH)(2)(CH(3)CO(2))(18) (3), and Cd(20)(H(2)O)(20)(OH)(4)(CH(3)CO(2))(36) (4) have been isolated. The coordination networks exhibit interesting structural diversity and have been investigated by powder X-ray diffraction, elemental analysis, thermal gravimetric analysis, infrared spectroscopy, and single-crystal X-ray diffraction. All four complexes are composed of secondary building units with the general formula [Cd(4)(OAc)(9)(μ(3)-OH)](2-). Complexes 1 and 2 exhibit a remarkable three-dimensional network composed of aligned columns, each 4.5 nm long, containing three different cadmium acetate clusters. Complexes 3 and 4 extend in two-dimensions with each unit cell repeating a different linkage isomer of the [Cd(4)(OAc)(9)(μ(3)-OH)](2-) cluster.  相似文献   

15.
Very recently it was shown that the metalloid cluster compound {Ge(9)[Si(SiMe(3))(3)](3)}(-)1 can be used for subsequent reactions as the shielding of the cluster core is rather incomplete. So the reaction of 1 with Cr(CO)(3)(CH(3)CN)(3) leads to a cluster enlargement where the chromium atom is incorporated into the cluster core. Here further applications of 1 as a flexible ligand in coordination chemistry are presented where the reaction of 1 with Mo(CO)(3)(EtCN)(3) and W(CO)(3)(CH(3)CN)(3) leads to [(CO)(3)MoGe(9)R(3)](-)4 and [(CO)(3)WGe(9)R(3)](-)5 respectively (R = Si(SiMe(3))(3)), showing that 1 can indeed be used as a flexible ligand in coordination chemistry. Structural and electronic properties of the Ge(9)M clusters 4 and 5 are discussed as well as mechanistic aspects of their formation.  相似文献   

16.
A guided-ion beam tandem mass spectrometer is used to study the reactions, W(+) + CH(4) (CD(4)) and [W,C,2H](+) + H(2) (D(2)), to probe the [W,C,4H](+) potential energy surface. The reaction W(+) + CH(4) produces [W,C,2H](+) in the only low-energy process. The analogous reaction in the CD(4) system exhibits a cross section with strong differences at the lowest energies caused by zero-point energy differences, demonstrating that this reaction is slightly exothermic for CH(4) and slightly endothermic for CD(4). The [W,C,2H](+) product ion reacts further at thermal energies with CH(4) to produce W(CH(2))(x)(+) (x = 2-4). At higher energies, the W(+) + CH(4) reaction forms WH(+) as the dominant ionic product with smaller amounts of WCH(3)(+), WCH(+), and WC(+) also formed. The energy dependent cross sections for endothermic formation of the various products are analyzed and allow the determination of D(0)(W(+)-CH(3)) approximately 2.31 +/- 0.10 eV, D(0)(W(+)-CH(2)) = 4.74 +/- 0.03 eV, D(0)(W(+)-CH) = 6.01 +/- 0.28 eV, and D(0)(W(+)-C) = 4.96 +/- 0.22 eV. We also examine the reverse reaction, [W,C,2H](+) + H(2) (D(2)) --> W(+) + CH(4) (CH(2)D(2)). Combining the cross sections for the forward and reverse processes yields an equilibrium constant from which D(0)(W(+)-CH(2)) = 4.72 +/- 0.04 eV is derived. Theoretical calculations performed at the B3LYP/HW+/6-311++G(3df,3p) level yield thermochemistry in reasonable agreement with experiment. These calculations help identify the structures and electronic states of the species involved and characterize the potential energy surface for the [W,C,4H](+) system.  相似文献   

17.
The ionization-dissociation of methyl iodide in intense laser field has been studied using a reflection time-of-flight mass spectrometry (RTOF-MS), at a laser intensity of < or =6.6x10(14) W/cm(2), lambda=798 nm, and a pulse width of 180 fs. With the high resolution of RTOF-MS, the fragment ions with the same M/z but from different dissociation channels are resolved in the mass spectra, and the kinetic energy releases (KERs) of the fragment ions such as I(q+) (q=1-6), CH(m) (+) (m=0-3), C(2+), and C(3+) are measured. It is found that the KERs of the fragment ions are independent of the laser intensity. The fragments CH(3) (+) and I(+) with very low KERs (<1 eV for CH(3) (+) and <0.07 eV for I(+)) are assigned to be produced by the multiphoton dissociation of CH(3)I(+). For the fragments CH(3) (+) and I(+) from CH(3)I(2+), they are produced by the Coulomb explosion of CH(3)I(2+) with the interaction from the covalent force of the remaining valence electrons. The split of the KER of the fragments produced from CH(3)I(2+) dissociation is observed experimentally and explained with the energy split of I(+)((3)P(2)) and I(+)((3)P(0,1)). The dissociation CH(3)I(3+)-->CH(3) (+)+I(2+) is caused by Coulomb explosion. The valid charge distance R(c) between I(2+) and CH(3) (+), at which enhanced ionization of methyl iodide occurs, is obtained to be 3.7 A by the measurements of the KERs of the fragments CH(3) (+) and I(2+). For the CH(3)I(n+) (n> or =3), the KERs of the fragment ions CH(3) (p+) and I(q+) are attributed to the Coulomb repulsion between CH(3) (p+) and I(q+) from R(c) approximately 3.7 A. The dissociation of the fragment CH(3) (+) is also discussed. By the enhanced ionization mechanism and using the measured KER of I(q+), all the possible Coulomb explosion channels are identified. By comparing the abundance of fragment ions in mass spectrum, it is found that the asymmetric dissociation channels with more charges on iodine, q>p, are the dominant channels.  相似文献   

18.
Density functional theory has been used to investigate the structures, bonding and properties of a family of hydride rich late transition metal clusters of the type [Rh(6)(PH(3))(6)H(12)](x) (x = 0, +1, +2, +3 or +4), [Rh(6)(PH(3))(6)H(16)](x) (x = +1 or +2) and [Rh(6)(PH(3))(6)H(14)](x) (x = 0, +1 or +2). The positions of the hydrogen atoms around the pseudo-octahedral Rh(6) core in the optimized structures of [Rh(6)(PH(3))(6)H(12)](x) (x = 0, +1, +2, +3 or +4) varied depending on the overall charge on the cluster. The number of semi-bridging hydrides increased (semi-bridging hydrides have two different Rh-H bond distances) as the charge on the cluster increased and simultaneously the number of perfectly bridging hydrides (equidistant between two Rh centers) decreased. This distortion maximized the bonding between the hydrides and the metal centers and resulted in the stabilization of orbitals related to the 2T(2g) set in a perfectly octahedral cluster. In contrast, the optimized structures of the 16-hydride clusters [Rh(6)(PH(3))(6)H(12)](x) (x = +1 or +2) were similar and both clusters contained an interstitial hydride, along with one terminal hydride, ten bridging hydrides and two coordinated H(2) molecules which were bound to two rhodium centers in an eta(2):eta(1)-fashion. All the hydrides were on the outside of the Rh(6) core in the lowest energy structures of the 14-hydride clusters [Rh(6)(PH(3))(6)H(14)] and [Rh(6)(PH(3))(6)H(14)](+), which both contained eleven bridging hydrides, one terminal hydride and one coordinated H(2) molecule. Unfortunately, the precise structure of [Rh(6)(PH(3))(6)H(14)](2+) could not be determined as structures both with and without an interstitial hydride were of similar energy. The reaction energetics for the uptake and release of two molecule of H(2) by a cycle consisting of [Rh(6)(PH(3))(6)H(12)](2+), [Rh(6)(PH(3))(6)H(16)](2+), [Rh(6)(PH(3))(6)H(14)](+), [Rh(6)(PH(3))(6)H(12)](+) and [Rh(6)(PH(3))(6)H(14)](2+) were modelled, and, in general, good agreement was observed between experimental and theoretical results. The electronic reasons for selected steps in the cycle were investigated. The 12-hydride cluster [Rh(6)(PH(3))(6)H(12)](2+) readily picks up two molecules of H(2) to form [Rh(6)(PH(3))(6)H(16)](2+) because it has a small HOMO-LUMO gap (0.50 eV) and a degenerate pair of LUMO orbitals available for the uptake of four electrons (which are provided by two molecules of H(2)). The reverse process, the spontaneous release of a molecule of H(2) from [Rh(6)(PH(3))(6)H(16)](+) to form [Rh(6)(PH(3))(6)H(14)](+) occurs because the energy gap between the anti-bonding SOMO and the next highest energy occupied orbital in [Rh(6)(PH(3))(6)H(16)](+) is 0.9 eV, whereas in [Rh(6)(PH(3))(6)H(14)](+) the energy gap between the anti-bonding SOMO and the next highest energy occupied orbital is only 0.3 eV. At this stage the factors driving the conversion of [Rh(6)(PH(3))(6)H(14)](+) to [Rh(6)(PH(3))(6)H(12)](2+) are still unclear.  相似文献   

19.
The electrochemistry and spectroelectrochemistry of a novel series of mixed-ligand diruthenium compounds were examined. The investigated compounds having the formula Ru(2)(CH(3)CO(2))(x)(Fap)(4-x)Cl where x = 1-3 and Fap is 2-(2-fluoroanilino)pyridinate anion were made from the reaction of Ru(2)(CH(3)CO(2))(4)Cl with 2-(2-fluoroanilino)pyridine (HFap) in refluxing methanol. The previously characterized Ru(2)(Fap)(4)Cl as well as the three newly isolated compounds represented as Ru(2)(CH(3)CO(2))(Fap)(3)Cl (1), Ru(2)(CH(3)CO(2))(2)(Fap)(2)Cl (2), and Ru(2)(CH(3)CO(2))(3)(Fap)Cl (3) possess three unpaired electrons with a Ru(2)(5+) dimetal core. Complexes 1 and 2 have well-defined Ru(2)(5+/4+) and Ru(2)(5+/6+) redox couples in CH(2)Cl(2), but 3 exhibits a more complicated electrochemical behavior due to equilibria involving association or dissociation of the anionic chloride axial ligand on the initial and oxidized or reduced forms of the compound. The E(1/2) values for the Ru(2)(5+/4+) and Ru(2)(5+/6+) processes vary linearly with the number of CH(3)CO(2)(-) bridging ligands on Ru(2)(CH(3)CO(2))(x)(Fap)(4-x)Cl and plots of reversible half-wave potentials vs the number of acetate groups follow linear free energy relationships with the largest substituent effect being observed for the oxidation. The major UV-visible band of the examined compounds in their neutral Ru(2)(5+) form is located between 550 and 800 nm in CH(2)Cl(2) and also varies linearly with the number of CH(3)CO(2)(-) ligands on Ru(2)(CH(3)CO(2))(x)(Fap)(4-x)Cl. The electronic spectra of the singly oxidized and singly reduced forms of each diruthenium species were characterized by UV-visible spectroelectrochemistry in CH(2)Cl(2).  相似文献   

20.
Electrospray ionization (ESI) of tryptophan gives rise to multiply charged, non‐covalent tryptophan cluster anions, [Trpn–xH]x?, in a linear ion trap mass spectrometer, as confirmed by high‐resolution experiments performed on a Fourier transform ion cyclotron resonance (FT‐ICR) mass spectrometer. The smallest multiply charged clusters that can be formed in the linear ion trap as a function of charge state are: x = 2, n = 7; x = 3, n = 16; x = 4, n = 31. The fragmentation of the dianionic cluster [Trp9–2H]2? was examined via low‐energy collision‐induced dissociation (CID), ultraviolet photodissociation (UVPD) at 266 nm and electron‐induced dissociation (EID) at electron energies ranging from >0 to 30 eV. CID proceeds mostly via charge separation and evaporation of neutral tryptophan. The smallest doubly charged cluster that can be formed via evaporation of neutral tryptophans is [Trp7–2H]2?, consistent with the observation of this cluster in the ESI mass spectrum. UVPD gives singly charged tryptophan clusters ranging from n = 2 to n = 9. The latter ion arises from ejection of an electron to give the radical anion cluster, [Trp9–2H]?.. The types of gas‐phase EID reactions observed are dependent on the energy of the electrons. Loss of neutral tryptophan is an important channel at lower energies, with the smallest doubly charged ion, [Trp7–2H]2?, being observed at 19.8 eV. Coulomb explosion starts to occur at 19.8 eV to form the singly charged cluster ions [Trpx–H]? (x = 1–8) via highly asymmetric fission. At 21.8 eV a small amount of [Trp2–H–NH3]? is observed. Thus CID, UVPD and EID are complementary techniques for the study of the fragmentation reactions of cluster ions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号