首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SVEC Frantisek 《色谱》2005,23(6):585-594
 Modern porous monoliths have been conceived as a new class of stationary phases for high performance liquid chromatography (HPLC) in classical columns in the early 1990s and later extended to the capillary format. These monolithic materials are prepared using simple processes carried out in an external mold (inorganic monoliths) or within the confines of the column (organic monoliths and all capillary columns). These methods afford macroporous materials with large through-pores that enable applications in a rapid flow-through mode. Since all the mobile phase must flow through the monolith, the convection considerably accelerates mass transport within the monolithic separation medium and improves the separations. As a result, the monolithic columns perform well even at very high flow rates. The applications of monolithic capillary columns are demonstrated on numerous separations in the HPLC mode.  相似文献   

2.
Multiwalled carbon nanotubes have been entrapped in monolithic poly(glycidyl methacrylate-co-ethylene dimethacrylate) capillary columns to afford stationary phases with enhanced liquid chromatographic performance for small molecules in the reversed phase. While the column with no nanotubes exhibited an efficiency of only 1800 plates/m, addition of a small amount of nanotubes to the polymerization mixture increased the efficiency to over 15,000 and 35,000 plates/m at flow rates of 1 and 0.15 μL/min, respectively. Alternatively, the native glycidyl methacrylate-based monolith was functionalized with ammonia and, then, shortened carbon nanotubes, bearing carboxyl functionalities, were attached to the pore surface through the aid of electrostatic interactions with the amine functionalities. Reducing the pore size of the monolith enhanced the column efficiency for the retained analyte, benzene, to 30,000 plates/m at a flow rate of 0.25 μL/min. Addition of tetrahydrofuran to the typical aqueous acetonitrile eluents improved the peak shape and increased the column efficiency to 44,000 plates/m calculated for the retained benzene peak.  相似文献   

3.
N. Wu  Q. Tang  Y. Shen  M. L. Lee 《Chromatographia》1999,49(7-8):431-435
Summary In this paper, practical considerations of column efficiency, separation speed, thermal stability, and column polarity of capillary columns packed with polybutadiene-coated zirconia were investigated under solvating gas chromatography (SGC) conditions using carbon dioxide as mobile phase. When compared with results obtained from conventional porous octadecyl obtained from conventional porous octadecyl bonded silica (ODS) particles, PBD-zirconia particles produced greater change in mobile phase linear velocity with pressure than conventional ODS particles under the same conditions. The maximum plate number per second (Nt) obtained with a 30 cm PBD-zirconia column was approximately 1.5 times higher than that obtained with an ODS column at 100 °C. Therefore, the PBD-zirconia phase is more suitable for fast separations than conventional ODS particles in SGC. Maximum plate numbers per meter of 76,900 and 63,300 were obtained using a 57 cm×250 μm i.d. fused silica capillary column packed with 3 μm PBD-zirconia at 50 °C and 100 °C, respectively. The PBD-zirconia phase was stable at temperatures up to 320 °C under SGC conditions using carbon dioxide as mobile phase. Polarizable aromatic compounds and low molecular weight ketones and aldehydes were eluted with symmetrical peaks from a 10 cm column packed with 3 μm PBD-zirconia. Zirconia phases with greater inertness are required for the analysis of more polar compounds by SGC.  相似文献   

4.
High-efficiency peptide analysis using multimode pressure-assisted capillary electrochromatography/capillary electrophoresis (pCEC/pCE) monolithic polymeric columns and the separation of model peptide mixtures and protein digests by isocratic and gradient elution under an applied electric field with UV and electrospray ionization-mass spectrometry (ESI-MS) detection is demonstrated. Capillary multipurpose columns were prepared in silanized fused-silica capillaries of 50, 75, and 100 microm inner diameters by thermally induced in situ copolymerization of methacrylic monomers in the presence of n-propanol and formamide as porogens and azobisisobutyronitrile as initiator. N-Ethylbutylamine was used to modify the chromatographic surface of the monolith from neutral to cationic. Monolithic columns were termed as multipurpose or multimode columns because they showed mixed modes of separation mechanisms under different conditions. Anion-exchange separation ability in the liquid chromatography (LC) mode can be determined by the cationic chromatographic surface of the monolith. At acidic pH and high voltage across the column, the monolithic stationary phase provided conditions for predominantly capillary electrophoretic migration of peptides. At basic pH and electric field across the column, enhanced chromatographic retention of peptides on monolithic capillary column made CEC mechanisms of migration responsible for separation. The role of pressure, ionic strength, pH, and organic content of the mobile phase on chromatographic performance was investigated. High efficiencies (exceeding 300 000 plates/m) of the monolithic columns for peptide separations are shown using volatile and nonvolatile, acidic and basic buffers. Good reproducibility and robustness of isocratic and gradient elution pressure-assisted CEC/CE separations were achieved for both UV and ESI-MS detection. Manipulation of the electric field and gradient conditions allowed high-throughput analysis of complex peptide mixtures. A simple design of sheathless electrospray emitter provided effective and robust low dead volume interfacing of monolithic multimode columns with ESI-MS. Gradient elution pressure-assisted mixed-mode separation CE/CEC-ESI-MS mass fingerprinting and data-dependent pCE/pCEC-ESI-MS/MS analysis of a bovine serum albumin (BSA) tryptic digest in less than 5 min yielding high sequence coverage (73%) demonstrated the potential of the method.  相似文献   

5.
Huang G  Lian Q  Zeng W  Xie Z 《Electrophoresis》2008,29(18):3896-3904
A silica-based monolith as polar stationary phase was described for hydrophilic interaction pressurized capillary electrochromatography (HI-pCEC). The polar monolithic column was prepared by on-column reaction of lysine with epoxy groups on a gamma-glycidoxypropyltrimethosysilane-modified silica monolith. The stationary phase yielded strong hydrophilic interaction due to the slightly polar hydroxyl groups, and the strong polar lysine ligand with amino groups and carboxylic groups contained on the surface of the monolith. In order to evaluate the hydrophilic character of lysine ligand, the chromatographic behaviors of epoxy monolith (before lysine bonded) and diol monolith (hydroxyl groups contained) were also investigated. Two groups of comparative experiment were developed in terms of the separation of typical neutral non-polar and polar compounds performed in a mobile phase of aqueous-acetonitrile solution. Results showed that the lysine monolith was much more hydrophilic than the diol monolith, which presented less hydrophobic than the epoxy monolith. For further study on its hydrophilic character, the lysine monolith was demonstrated in the HI-pCEC mode for the separations of various polar compounds such as phenols, nucleic acid bases and nucleosides.  相似文献   

6.
N. Wu  R. Yee  M. L. Lee 《Chromatographia》2000,53(3-4):197-200
Summary Fast separations of perfluorinated polyethers and polymethylsiloxanes that are composed of 50–80 oligomers were demonstrated in packed capillary column supercritical fluid chromatography (SFC) using a carbon dioxide mobile phase. Separations were accomplished within 10 min using a 13 cm×250 μm i.d. column packed with 2 μm porous octadecyl bonded silica (ODS) particles. Effects of particle diameter of the packing material and pressure programming on separation were investigated, and packed column SFC was compared with open tubular column SFC. Results show that as the particle diameter was decreased from 5 to 3 to 2 μm and the column length was reduced from 85 to 43 to 13 cm, the separation time could be reduced from 70 to 20 to 10 min while still maintaining similar separation (resolution). Short columns packed with small porous particles are very suitable for fast SFC separations of polymers.  相似文献   

7.
制备了一种新的含多壁碳纳米管的硅胶整体柱,并用扫描电子显微镜和比表面积测试仪对其进行了表征.利用正己烷为流动相,考察了该整体柱的流速与渗透率和流速与柱压降的关系,以及苯取代化合物在该整体柱上的色谱保留行为,并对其在分离过程中的作用机理进行了探讨.  相似文献   

8.
Comprehensive two-dimensional (2D) HPLC in the reversed-phase liquid chromatography (RPLC) mode using C18 silica monolith columns at first dimension (1st-D) (10 cm x 4.6mm I.D.) and second dimension (2nd-D) (5 cm x 4.6mm I.D.) was carried out successfully. A mixture of water and tetrahydrofuran (THF) was used as a mobile phase in the 1st-D separation, and a mixture of water and methanol (CH3OH) in the 2nd-D separation. Sample fractions from 1st-D column were directly loaded into an injection loop of the 2nd-D HPLC equipped with two injector valves for one column. The fractionation time at the 1st-D that was equal to the separation time at the 2nd-D was 45 or 60s. Total peak capacity up to 900 was obtained in about 60 min for the isocratic mode separation of aromatic compounds in this system. Gradient elution mode applied to both 1st-D and 2nd-D separations resulted in shorter separation time and better separation efficiencies than the isocratic mode. It was demonstrated that 2D-HPLC systems employing popular C18 stationary phases with different organic modifiers in mobile phases for each dimension could produce large peak capacity. The different selectivities were provided by the difference in polar interactions between a solute and the organic modifier existing in the stationary phase.  相似文献   

9.
Three commercially available high performance liquid chromatography columns are used in normal phase or quasi-normal phase mode for the separation of gas oil samples. The columns are tested with 20 analytical standards to determine their suitability for separations of petroleum samples and their ability to separate the nitrogen group-types (pyrrole and pyridine) found in petroleum. The columns studied are polymeric hypercrosslinked polystyrene (HGN), a biphenyl phase, and a Chromegabond "DNAP" column from ES Industries. The HGN column separates gas oils based on both ring structure and heteroatom, while the biphenyl phase has low retention of most compounds studied in quasi-normal phase mode. The "DNAP" column is selective for nitrogen-containing compounds, separating them from PAHs as well as oxygen and sulphur compounds. Retention data of standards on all three columns is shown, along with chromatograms of gas oil samples on the HGN and "DNAP" columns.  相似文献   

10.
An HETP equation for the capillary column is developed that takes into account the dependence of gaseous diffusion on pressure, the compressibility of the mobile phase, together with the unique relationship between mobile phase velocity, and the resistance to mass transfer in the stationary phase. The equation is used to develop a procedure for column optimization and expressions are derived that allow the optimum column radius and optimum column length to be calculated for a given fixed inlet pressure. It is shown that fast, simple separations are optimally achieved using relatively short small diameter columns. Conversely, optimum performance for the separation of complex mixtures requiring higher efficiencies requires the use of long columns with relatively large diameters.  相似文献   

11.
Boronate affinity chromatography (BAC) is an important tool for specific capture and separation of cis-diol-containing compounds such as glycoproteins, RNA and carbohydrates. Only a few reports on monolithic column-based BAC have appeared. In this paper, boronate functionalized monolithic capillary column was synthesized by in situ free radical polymerization for the first time. The prepared column was first characterized in terms of morphology, pore properties, capacity and retention mechanisms. The column exhibited uniform open channel network and high capture capacity. Systematical investigation on the retention mechanism revealed that multiple intermolecular interactions occur between the analytes and the boronate affinity monolith, including boronate affinity, reversed-phase, cation-exchange and hydrogen bonding interactions, depending on the conditions used. In addition, the presence of Lewis base such as fluoride ion in the mobile phase was found to be favorable to the complexation between cis-diol-containing compounds with the boronic acid ligand under less basic conditions. On the basis of these fundamental investigations, the prepared monolithic column was then applied to the capture of adenosine and flavin adenine dinucleotide. The investigations in this study provide sound understanding not only on how to manipulate the separation selectivity through selection of appropriate mobile phase composition on the currently prepared columns but also on how to design next-generation columns with desired properties and functions.  相似文献   

12.
Capillary Electrochromatography (CEC) offers a rapid, economical, and efficient means for resolving nonionic compounds in the reversed phase mode on octadecylsilane (ODS) columns. A CEC optimization on a Hypersil ODS capillary column was employed to identify a suitable mobile phase for the pressure-driven (reversed phase ODS) separation of the anti-inflammatory 2-phenylmethyl-1-naphthol (DUP 654), and its related substances. The proportions of mobile phase modifiers methanol, acetonitrile, and water as well as pH were employed as variables in a stacked mixture design. Comparable response surface profiles were obtained for the CEC separations at pH 4 and pH 8. However, subtle differences were evident in the quality of separations obtained in the liquid chromatographic (LC) mode when using a specially-prepared column packed with exactly the same stationary phase as used in the CEC experiments. A mapping of the response surface for separations on a commercially available Hypersil ODS LC column revealed obvious differences. The differences indicate that the transfer of ODS based separation methods between CEC and LC involves more than simply transferring the conditions from one mode to the other.  相似文献   

13.
A monolithic capillary column with a mixed‐mode stationary phase of reversed‐phase/hydrophilic interaction chromatography was prepared for capillary liquid chromatography. The monolith was created by an in‐situ copolymerization of a homemade monomer N,N‐dimethyl‐N‐acryloxyundecyl‐N‐(3‐sulfopropyl) ammonium betaine and a crosslinker pentaerythritol triacrylate in a binary porogen agent consisting of methanol and isopropanol. The functional monomer was designed to have a highly polar zwitterionic sulfobetaine terminal group and a hydrophobic long alkyl chain moiety. The composition of the polymerization solution was systematically optimized to permit the best column performance. The columns were evaluated by using acidic, basic, polar neutral analytes, as well as a set of alkylbenzenes and Triton X100. Very good separations were obtained on the column with the mixed‐mode stationary phase. It was demonstrated that the mixed‐mode stationary phase displayed typic dual retention mechanisms of reversed‐phase/hydrophilic interaction liquid chromatography depending on the content of acetonitrile in the mobile phase. The method for column preparation is reproducible.  相似文献   

14.
High performance liquid chromatography in a quasi-normal phase mode (QNP) is used to separate the nitrogen group-types (pyrrole and pyridine) that are found in petroleum. A new type of stationary phase, hypercrosslinked polystyrene, is used to achieve this separation. Three different hypercrosslinked polystyrene stationary phases are compared under quasi-normal phase mode; a commercial 5-HGN packing, and two hypercrosslinked phases on silica particles. The utility of the columns for petroleum-based separations was explored with the use of 21 analytical standards. Partial elucidation of adsorption retention mechanisms for the columns are shown, as well as a comparison of retention characteristics for the three columns. The silica particle column derived with toluene (HC-Tol) was found to have the best selectivity for nitrogen group-types and polycyclic aromatic hydrocarbons (PAHs), attaining a separation under gradient conditions in less than 30 min.  相似文献   

15.
Both poly(styrene-co-vinylbenzyl chloride-co-divinylbenzene) and poly(4-methylstyrene-co-vinylbenzyl chloride-co-divinylbenzene) monolithic columns have been hypercrosslinked and for the first time used to achieve capillary electrochromatographic separations. Although these columns do not contain ionizable functionalities, electroosmotic flow was observed due to adsorption of ions from a buffer solution contained in the mobile phase on the surface of the hydrophobic polymer. An increase of more than one order of magnitude was observed with the use of both monolithic polymers. The hypercrosslinking reaction creates a large surface area thus enabling adsorption of a much larger number of ions. Alkylbenzenes were successfully separated using the hypercrosslinked monolithic columns.  相似文献   

16.
A novel organic‐silica hybrid monolith was prepared through the binding of histidine onto the surface of monolithic matrix for mixed‐mode per aqueous and ion‐exchange capillary electrochromatography. The imidazolium and amino groups on the surface of the monolithic stationary phase were used to generate an anodic electro‐osmotic flow as well as to provide electrostatic interaction sites for the charged compounds at low pH. Typical per aqueous chromatographic behavior was observed in water‐rich mobile phases. Various polar and hydrophilic analytes were selected to evaluate the characteristics and chromatographic performance of the obtained monolith. Under per aqueous conditions, the mixed‐mode mechanism of hydrophobic and ion‐exchange interactions was observed and the resultant monolithic column proved to be very versatile for the efficient separations of these polar and hydrophilic compounds (including amides, nucleosides and nucleotide bases, benzoic acid derivatives, and amino acids) in highly aqueous mobile phases. The successful applications suggested that the histidine‐modified organic‐silica hybrid monolithic column could offer a wide range of retention behaviors and flexible selectivities toward polar and hydrophilic compounds.  相似文献   

17.
A method for the preparation of poly(N-vinylpyrrolidone-co-pentaerythritol triacrylate copolymerization)-based monolithic capillary column was reported for the separation of polar small molecular weight compounds with nano-liquid chromatography in hydrophilic interaction chromatography mode. The monolithic columns were prepared by in situ copolymerization of N-vinylpyrrolidone and a cross-linker pentaerythritol triacrylate in a binary porogenic agent consisting of methanol and water. The composition of the polymerization solution was systematically optimized in terms of column permeability, theoretical plate number, asymmetric factor, and retention factor. A typical hydrophilic chromatography retention mechanism was observed with a mobile phase composed of a high content of organic solvent. The preparation method is simple and robust, the precursor N-vinylpyrrolidone is chemically stable, cheap, and easily available. The N-vinylpyrrolidone-based hydrophilic interaction chromatography stationary phase displays satisfactory separation selectivity for a range of polar test analytes, including benzoic acid derivatives, nucleosides, and phenols.  相似文献   

18.
Two‐dimensional liquid chromatography largely increases the number of separated compounds in a single run, theoretically up to the product of the peaks separated in each dimension on the columns with different selectivities. On‐line coupling of a reversed‐phase column with an aqueous normal‐phase (hydrophilic interaction liquid chromatography) column yields orthogonal systems with high peak capacities. Fast on‐line two‐dimensional liquid chromatography needs a capillary or micro‐bore column providing low‐volume effluent fractions transferred to a short efficient second‐dimension column for separation at a high mobile phase flow rate. We prepared polymethacrylate zwitterionic monolithic micro‐columns in fused silica capillaries with structurally different dimethacrylate cross‐linkers. The columns provide dual retention mechanism (hydrophilic interaction and reversed‐phase). Setting the mobile phase composition allows adjusting the separation selectivity for various polar substance classes. Coupling on‐line an organic polymer monolithic capillary column in the first dimension with a short silica‐based monolithic column in the second dimension provides two‐dimensional liquid chromatography systems with high peak capacities. The silica monolithic C18 columns provide higher separation efficiency than the particle‐packed columns at the flow rates as high as 5 mL/min used in the second dimension. Decreasing the diameter of the silica monolithic columns allows using a higher flow rate at the maximum operation pressure and lower fraction volumes transferred from the first, hydrophilic interaction dimension, into the second, reversed‐phase mode, avoiding the mobile phase compatibility issues, improving the resolution, increasing the peak capacity, and the peak production rate.  相似文献   

19.
This work reports the preparation of monolithic zirconia chiral columns for separation of enantiomeric compounds by capillary electrochromatography (CEC). Using sol–gel technology, a porous monolith having interconnected globular-like structure with through-pores is synthesized in the capillary column as a first step in the synthesis of monolithic zirconia chiral capillary columns. In the second step, the surface of the monolith is modified by coating with cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC) as the chiral stationary phase to obtain a chiral column (CDMPCZM). The process of the preparation of the zirconia monolithic capillary column was investigated by varying the concentrations of the components of the sol solution including polyethylene glycol, water and acetic acid. CDMPCZM is mechanically stable and no bubble formation was detected with the applied current of up to 30 μA. The enantioseparation behavior of the CDMPCZM columns was investigated by separating a set of 10 representative chiral compounds by varying the applied voltage and pH and organic composition of the aqueous organic mobile phases.  相似文献   

20.
Okanda FM  El Rassi Z 《Electrophoresis》2005,26(10):1988-1995
A neutral, nonpolar monolithic capillary column having a relatively strong electroosmotic flow (EOF) yet free of electrostatic interactions with charged solutes was developed for the reversed-phase capillary electrochromatography (RP-CEC) of neutral and charged species including peptides and proteins. The neutral nonpolar monolith is based on the in situ polymerization of pentaerythritol diacrylate monostearate (PEDAS) in a ternary porogenic solvent composed of cyclohexanol, ethylene glycol, and water. PEDAS plays the role of both the cross-linker and the ligand provider, generating a macroporous nonpolar monolith having C17 chains as the chromatographic ligands. Despite the fact that the neutral PEDAS monolith is devoid of fixed charges, the monolithic capillary columns exhibited a relatively strong EOF due to the ability of PEDAS to adsorb sufficient amounts of electrolyte ions from the mobile phase. The adsorbed ions imparted the neutral PEDAS monolith the zeta potential necessary to support the EOF required for mass transport across the monolithic column. The absence of fixed charges on the surface of the neutral PEDAS monolith and in turn the adsorption sites for electrostatic attraction of charged solutes allowed the rapid and efficient separations of proteins and peptides at pH 7.0, with an average plate number of 255,000 and 121,000 plates/m, respectively. To the best of our knowledge, this constitutes the first report on the separation of proteins at neutral pH by RP-CEC using a neutral monolithic column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号