首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
通过溶液折光指数和粘度测定,研究了聚丙烯酸(PAA)与聚氧化乙烯(PEO)高分子链间在复合溶液中的相互作用和PAA/PEO高分子氢键复合溶液的结构与粘度,研究了复合溶液粘度随溶液pH值的变化规律及不同浓度时剪切速率对复合溶液粘度和复合增粘效果的影响。结果表明:PAA/PEO复合溶液结构不同于PAA和PEO两组分聚合物溶液结构,PAA与PEO高分子链间的氢键相互作用形成构象更为伸展、流体力学体积列大  相似文献   

2.
This work reports for the first time a simple and effective approach to trigger a spheres‐to‐ vesicles morphological transition from amphiphilic block copolymer/polyelectrolyte complexes in aqueous solution. Vesicles and large compound vesicles (LCVs) were prepared via complexation of polystyrene‐block‐poly(ethylene oxide) (PS‐b‐PEO) with poly(acrylic acid) (PAA) in water and directly visualized using cryo‐TEM. The complexation and morphological transitions were driven by the hydrogen bonding between the complementary binding sites on the PAA and PEO blocks of the block copolymer. The findings in this work suggest that complexation between amphiphilic block copolymer and polyelectrolyte is a viable approach to vesicles and LCVs in aqueous media.  相似文献   

3.
To investigate the effects of solvent type and temperature on the interpolymer complexation via hydrogen bonding, a study was made on the complex system of poly(acrylic acid) (PAA) and poly(ethylene oxide) (PEO) in two kinds of solvent systems, pure water and water-MeOH (30 wt%) mixed solvent, at various temperatures using the Ubbelohde viscometer, pH-meter, and UV spectrophotometer. The repeating unit mole ratio at the most optimum complexation as confirmed by the reduced viscosity measurement was shifted from [PEO]/[PAA] ≈ 1.25:1 to 1.5:1 by the addition of methanol to water. From the UV measurement, the deviation from the “isosbestic point” (where the absorbance of the solution remains constant) has presented another evidence for the solvent effect on complexation. In addition, the analysis of the changes in thermodynamic properties upon complexation as well as the fraction of carboxyls associated with PEO oxygens and the complex stability constant as estimated by potentiometric titration at several temperatures reveals that the complex formation in mixed solvent became more unfavorable compared to that in pure solvent at high temperatures above 30°C. This could be explained by considering that in water the hydrophobic interaction as well as the hydrogen bonding may greatly contribute to the stabilization of the polymer complex formed, while in water-methanol the main stabilizing force would be the hydrogen bonding alone.  相似文献   

4.
The ESR lineshapes of nitroxide radical end‐labeled on poly(ethylene oxide) (SLPEO) for the pure polymer and for different weight ratio complexes with poly(acrylic acid) (PAA) were studied as a function of temperature. For SLPEO one spectral component was detected in the entire temperature range, indicating that the spin label was in the homogeneous phase domain. For all PAA–PEO complexes two spectral components with different rates of motion, a ‘fast’ and a ‘slow’ component, were observed, which indicates the existence of microheterogeneity at the molecular level: the more mobile the PEO‐rich microphase, the more rigid is the PAA‐rich microphase. On the other hand, the SLPEO polymer segmental motion was restricted owing to the hydrogen bond interaction between the carboxyl proton in PAA and the ether oxygen in PEO. This restriction was exacerbated with increasing the PAA content in the complex, which could be further substantiated through the calculated S and τc values. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
We report the development of a solid polymer electrolyte film from hydrogen bonding layer-by-layer (LBL) assembly that outperforms previously reported LBL assembled films and approaches battery integration capability. Films were fabricated by alternating deposition of poly(ethylene oxide) (PEO) and poly(acrylic acid) (PAA) layers from aqueous solutions. Film quality benefits from increasing PEO molecular weight even into the 10(6) range due to the intrinsically low PEO/PAA cross-link density. Assembly is disrupted at pH near the PAA ionization onset, and a potential mechanism for modulating PEO:PAA ratio within assembled films by manipulating pH is discussed. Ionic conductivity of 5 x 10(-5) S/cm is achievable after short exposure to 100% relative humidity (RH) for plasticization. Adding free ions by exposing PEO/ PAA films to lithium salt solutions enhanced conductivity to greater than 10(-5) S/cm at only 52% RH and tentatively greater than 10(-4) S/cm at 100% RH. The excellent stability of PEO/PAA films even when exposed to 1.0 M salt solutions led to an exploration of LBL assembly with added electrolyte present in the adsorption step. Fortuitously, the modulation of PEO/PAA assembly by ionic strength is analogous to that of electrostatic LBL assembly and can be attributed to electrolyte interactions with PEO and PAA. Dry ionic conductivity was enhanced in films assembled in the presence of salt as compared to films that were merely exposed to salt after assembly, implying different morphologies. These results reveal clear directions for the evolution of these promising solid polymer electrolytes into elements appropriate for electrochemical power storage and generation applications.  相似文献   

6.
ABA block-copolymers in which the A segments are capable of forming complexes and B is a non-complexing segment, have been used to prepare polymer materials with properties that can be changed by adding a complexing agent. The complex forming segments were poly(ethylene oxide) (PEO), linear polyethylenimine (LPEI) and poly(N-tert-butylethylenimine) (PTBEI). Commercially available liquid ABA block-copolymers, in which A is PEO and B is poly(propylene oxide), were investigated with high molar mass poly(acrylic acid) (PAA) as the complexing agent for PEO. It was found that the mixtures containing 3 to 7 wt.-% of PAA, showed a marked shear-thickening behavior leading eventually to gelation. This was attributed to the transformation of intramolecular polymer complexes, at low shear rates, to intermolecular complexes, at high shear rates, due to the chain stretching of PAA. ABA copolymers in which A is LPEI or PTBEI and B polytetra-hydrofuran (PTHF), were prepared. Complexation of these copolymers with low molecular weight poly-acids or PAA in polar and non-polar solvents as well as in bulk have been investigated. ABA copolymers in which A is PEO and B a PTHF segment were prepared. These block-copolymers show two melting points: one at appr. 55°C, due to the PEO segments, and one at appr. 30°C due to the PTHF. Upon addition of alkali metal salts such as sodium iodide or sodium thiocyanate, complexes with PEO are formed and as a consequence, the melting point of the PEO segments shifts to appr. 160°C. The complexed materials behave as thermoplastic elastomers up to that temperature.  相似文献   

7.
分子间相互作用是决定材料结构和性能的关键因素之一,而如何在分子水上实现对复杂相互作用分子的检测仍然是一个挑战性课题。本工作首先在不同p H值条下以聚丙烯酸/聚环氧乙烷(PAA/PEO)的混合水溶液制备了系列的固体薄膜,然后采用多种基于连续相调制多脉冲技术的一维和二维~1H多脉冲去耦(CRAMPS)固体NMR新技术,并结合高分辨~(13)C交叉极化魔角旋转(CPMAS)、~(23)Na多量子(MQ)等多核固体NMR实验,对PAA/PEO聚合物共混物的微观结构和动力学进行了原位和系统的研究。通过不同类型的~1H高分辨CRAMPS实验检测到共混物中包含多种不同类型质子:通过氢键相互作用形成二聚体的COOH基团、自由COOH基团、与水结合的COOH基团和主链基团。随着p H值的升高,除主链质子外,大部分其它区域的信号都明显降低,这是由于PAA与PEO以及水的氢键作用减弱所致。这些CRAMPS NMR技术也被用来阐明不同p H值制备的样品中不同基团的分子运动性。此外,二维~1H-~1H自旋交换NMR实验提供了关于聚合物PAA与PEO大分子链间、以及水与聚合物的相互作用。~1H自旋扩散实验表明,在这些共混物中明显存在相微观相分离的结构,并且测定的分散相区尺寸约为17 nm。~(23)Na MQMAS实验揭示了在共混物中存在两种类型~(23)Na位,一种是自由的钠离子,另一种是与大分子相互作用的Na离子。特别是通过~1H-检测的~(23)Na-~1H CPMAS实验揭示了Na~+离子的位置远离PEO而与PAA临近。上述这些SSNMR实验结果在分子水平上提供了氢键相互作用对PAA/PEO共混物微观结构和动力学影响的详细信息,可以获得不同p H值对PAA与PEO的氢键作用、相容性、微观结构、水-聚合物相互作用和不同组分分子运动性的影响。在上述核磁共振研究的基础上,我们提出了一种新的PAA/PEO共混物的结构模型,该模型首次成功地揭示了不同的p H值对PAA/PEO共混物中微观结构和动力学的影响。本工作清楚地表明,固态核磁共振是在分子水平上研究具有复杂相互作用的多相聚合物材料的有力工具。本文的研究工作对于探索检测聚合物弱相互作用的新方法和发展基于氢键相互作用的聚合物新材料的开发具有重要意义。  相似文献   

8.
In aqueous solutions at room temperature, poly( N-methyl-2-vinyl pyridinium iodide)- block-poly(ethylene oxide), P2MVP 38- b-PEO 211 and poly(acrylic acid)- block-poly(isopropyl acrylamide), PAA 55- b-PNIPAAm 88 spontaneously coassemble into micelles, consisting of a mixed P2MVP/PAA polyelectrolyte core and a PEO/PNIPAAm corona. These so-called complex coacervate core micelles (C3Ms), also known as polyion complex (PIC) micelles, block ionomer complexes (BIC), and interpolyelectrolyte complexes (IPEC), respond to changes in solution pH and ionic strength as their micellization is electrostatically driven. Furthermore, the PNIPAAm segments ensure temperature responsiveness as they exhibit lower critical solution temperature (LCST) behavior. Light scattering, two-dimensional 1H NMR nuclear Overhauser effect spectrometry, and cryogenic transmission electron microscopy experiments were carried out to investigate micellar structure and solution behavior at 1 mM NaNO 3, T = 25, and 60 degrees C, that is, below and above the LCST of approximately 32 degrees C. At T = 25 degrees C, C3Ms were observed for 7 < pH < 12 and NaNO 3 concentrations below approximately 105 mM. The PEO and PNIPAAm chains appear to be (randomly) mixed within the micellar corona. At T = 60 degrees C, onion-like complexes are formed, consisting of a PNIPAAm inner core, a mixed P2MVP/PAA complex coacervate shell, and a PEO corona.  相似文献   

9.
Covalently bound protoporphyrin IX was used as a fluorophore to investigate the interpolymer complex formation between the poly(carboxylic acid)s, PMAA/PAA and poly(N-vinyl pyrrolidone), PVP, poly(ethylene oxide), PEO or poly(ethylene glycol), PEG. Absorption and emission spectral properties of protoporphyrin IX bound to PAA, PMAA and PVP have been studied. Protoporphyrin IX in poly(MAA-co-PPIX) was found to be present in the dimer or higher aggregated form at low pH due to the environmental restriction imposed by the polymer whereas in the case of poly(AA-co-PPIX) and poly(VP-co-PPIX), PPIX exists in monomeric form. The fluorescence intensity and lifetime of PPIX bound to poly(carboxylic acid)s increase on complexation through hydrogen bonding with PVP, PEO and PEG due to the displacement of water molecules in the vicinity of the PPIX. Poly(MAA-co-PPIX) shows longer fluorescence lifetime due to the more compact interpolymer complexation as compared to poly(AA-co-PPIX) due to the enhanced hydrophobicity of PMAA. Poly(VP-co-PPIX) shows a decrease in the fluorescence lifetime on complexation with PMAA or PAA due to the hydrophilic and microgel like environment of the fluorophore bound to PVP. The contrasting behaviour of the same polymer adduct with respect to the site of the fluorophore is interpreted to be due to the solvent structure which determines the environment of the fluorophore.  相似文献   

10.
The formation of poly(ethylene oxide) (PEO) supramolecular complexes is discussed in terms of intermolecular interactions and molecular packing. On the basis of the different known crystal structures, several mechanisms are proposed. First, the PEO complexes can be formed by an Intercalation or Inclusion process, guest molecules diffusing into the PEO unit cell. On the other hand, molecular complexes based on hydrogen bonding cannot be obtained by such a way, their formation requires the complete removal of the initial PEO structure either by melting or dissolution. Finally the relations between the crystal lamellar morphology, the host-guest interactions and the PEO chain mobility are discussed.  相似文献   

11.
An electron spin resonance (ESR) spin probe study was performed on 1 : 1 by weight poly(acrylic acid) (PAA)/poly(ethylene oxide) (PEO) complex over the 100–450 K temperature range with a series of tetramethylpiperidyloxy‐based spin probes. Measurements of the parameters T5mT, Ta and Td demonstrated the effects of probe size and the strength of hydrogen bonding. The probes in the series Tempone, Tempo, Tempol and Tamine (respectively 4‐oxo‐, unsubstituted, 4‐hydroxy‐ and 4‐amino‐2,2,6,6,‐tetramethylpiperidine ‐1‐oxyl) displayed noticeable increases in the hydrogen‐bonding effect, as indicated by Ta and Td. These increases correlated with increasing hydrogen bond acceptor strength. On the other hand, as the probe size became larger, T5mT gradually increased due to the free volume decrease. These effects were analyzed using the established theoretical relationship of T5mT to probe volume expressed by f. Meanwhile, in order to investigate the effect of polymer matrix rigidity, a similar study was performed with a nitroxide spin probe, 2,2,6,6‐tetramethyl‐1‐piperidine‐1‐oxyl (Tempo), on PAA/PEO complexes of different weight compositions. The quantitative fast motion fraction in the composite ESR spectrum was calculated. The influence of changes in the composition of PAA on the molecular mobility was characterized by changes of the spectral parameters and τc. The molecular mobility was shown to diminish with increasing content of PAA in PAA/PEO blends duo to the restriction of the polymer matrix rigidity increase. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
The phenomenon of self-assembly of aggregates formed by relatively short chains of poly(vinyl alcohol) (PVA) on the long macromolecules of polyacrylamide (PAA) in aqueous medium are discussed. PVA and PAA form intermolecular polycomplexes (InterPC) of a constant composition independently on a ratio of polymer components. The complex formation between high-molecular-weight PAA and relatively low-molecular-weight poly(ethylene oxide) (PEO) are considered also. PEO with M ⩽ 4·104 g.mol−1 weakly interacts with PAA. The polymer-polymer interaction can be intensified when the part of amide groups (∼20 mol %) on PAA chain to transform into the carboxylic groups. InterPCs formed by PEO and initial or modified PAA have associative structure with friable packing of the polymer segments. They are stabilized by the hydrogen bond system.  相似文献   

13.
The method of enhanced Rayleigh scattering spectroscopy (ERS) was developed to investigate the complexation of poly(acrylic acid) (PAA) and poly(ethylene oxide) (PEO) in semidilute polymer solutions. Based on the Ornstein‐Zernike equation, the relationship between macromolecular static correlation length and ERS intensity was presented. Moreover, the ERS spectra were calculated by the moving window two‐dimensional (MW2D) correlation spectroscopy to get detailed information of the polymer complexation. The results indicated that the ERS spectroscopy characteristics of the polymer mixtures have similar trend, and the ERS intensity promptly increases as the macromolecular chains contract. The increase of ERS intensity showed that the degree of complexation between PAA and PEO increases when the pH value decreases. The complexation results from the collapse of macromolecular chains, which is induced by the PAA chains contracting and the enhanced association between PAA and PEO chains because of the hydrogen bond formation. In addition, the association resulting from the complexation of PAA and PEO in solution was demonstrated by the MW2D correlation spectroscopy. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1847–1852, 2010  相似文献   

14.
以超支化双硫酯为链转移剂,偶氮二异丁腈(AIBN)为引发剂,采用可逆加成-断裂链转移(RAFT)活性自由基聚合方法,合成了以超支化聚酯(Boltorn H20)为核,聚丙烯酸为臂的两亲性超支化多臂共聚物(H20-star-PAA),并通过紫外分光光度计、动态光散射(DLS)和透射电子显微镜(TEM)对它在水溶液中的pH响应的自组装行为进行了研究.结果表明,在稀溶液条件下,H20-star-PAA始终以单分子胶束的形式存在,随着溶液pH的降低,胶束的PAA壳层会逐步塌缩,导致胶束尺寸减小;而在浓溶液条件下,当溶液的pH较低时,单分子胶束会进一步聚集形成多分子胶束.  相似文献   

15.
PEO flocculation with phenolic microparticles   总被引:2,自引:0,他引:2  
Polystyrene latex and precipitated calcium carbonate (PCC) with and without dextran sulfate pretreatment were flocculated by the consecutive addition of high-molecular-weight poly(ethylene oxide) and a novel composite latex microparticle consisting of a polystyrene core and a poly(p-vinylphenol) shell. Good flocculation of polystyrene latex and PCC was obtained, whereas the PCC coated with dextran sulfate was not flocculated. The interaction of the composite microparticle with the target colloids was governed by electrostatic forces, whereas hydrogen bonding and hydrophobic interactions drove the PEO adsorption onto the composite particles.  相似文献   

16.
An interpolymer complex was prepared by mixing aqueous solutions of poly(ethylene oxide) (PEO) and of a poly(carboxylic acid), i.e., poly(acrylic acid)(PAA), poly(methacrylic acid)(PMAA), or styrene-maleic acid copolymer(PSMA). The complexation mechanism was discussed on the basis of results of such experimental methods as viscosity, potentiometric titration, and turbidimetry. The hydrogen bond is primarily involved in these complexations, but the influence of hydrophobic interaction on complexation can not be ignored. If the degree of dissociation α of carboxylic acid or the degree of polymerization Pn of PEO was perceptibly changed, a stable complex was obtained at about α 0.1 or Pn (PEO) = 40 for PMAA, 200 for PAA. This fact indicates that more than a definite number of binding sites are necessary for a stable interpolymer complex to be formed and that cooperative interaction among active sites plays an important role in complex formation.  相似文献   

17.
Solution electrospinning was used for the first time to prepare nanofibers of the stable (α) and metastable (β) complexes between poly(ethylene oxide) (PEO) and urea. Both types of fibers were highly crystalline and presented a large level of molecular orientation. Detailed characterization of the ill‐studied β complex was performed using wide angle X‐ray diffraction (WAXD), infrared spectroscopy, and differential scanning calorimetry (DSC). Results reveal that it possesses a 3:2 PEO:urea stoichiometry and suggest that it belongs to the orthorhombic system with a = 1.907 nm, b = 0.862 nm, and c = 0.773 nm. The PEO chains are oriented along the fiber axis and present a conformation significantly affected by strong hydrogen bonding with urea when compared with the pure polymer and the stable complex. A layered structure model is suggested for the metastable complex, in which the urea molecules would be arranged into a ribbon‐like structure intercalated between two PEO layers. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1903–1913, 2008  相似文献   

18.
Two chemically dissimilar diblock copolymers, polybutadiene-b-poly(acrylic acid), PBd-b-PAA (Mw = 5.8–4 kg mol−1) and poly(styrene)-b-poly(ethylene oxide), PS-b-PEO (Mw = 9–5 kg mol−1) were blended in an effort to achieve morphologies typical of triblock copolymers. Blend compatibility was achieved by the hydrogen bond driven association of the PAA block of one diblock with the PEO block of the other. Small angle X-ray scattering was used to determine the morphologies of the compositions, which were further investigated using transmission electron microscopy and selective staining techniques. The crystallinity of the PEO block was determined by differential scanning calorimetry. The hydrogen bond interactions between PEO and PAA yielded a complex triblock lamellar morphology of the form PS-b-(PEO/PAA)-b-PBd-b-(PEO/PAA). This morphology was stable when crystallization of PEO was suppressed by sufficient interaction with PAA.  相似文献   

19.
The intermacromolecular complexation of polymers with chemically complementary structures in aqueous media is a new approach to modifying polymer solutions, especially to enhance solution viscosity. In this study, complexed solutions formed through the hydrogen‐bonding complexation of several nonionic water‐soluble polymer pairs—poly(acrylic acid) (PAA) with polyacrylamide (PAM), PAM with poly(ethylene oxide) (PEO), PAA with poly(vinyl alcohol) (PVA), and PEO with PVA—were prepared, and the viscosity enhancement of the complexed solutions were studied with vision spectrophotometry and viscometry. The effects of the polymer concentration, polymer molecular weight, and pH value of the polymer solution on the intermacromolecular interactions were investigated through a comparison of the viscosity enhancement factor R of different complexed solutions. The results show that the viscosity of the PAA/PAM complexed solution is much higher than that of its constituents, whereas that of the PAM/PEO and the PAA/PVA complexed solutions are between the viscosities of their constituents but are higher than the theory values calculated from the blending rule of two polymer solutions. These results indicate that in the complexed solutions there exist interactions between the macromolecules with chemically complementary structures, although the interactions are quite different for the different complexed systems. It is the interactions that lead to an association of the polymers and, hence, an obvious enhancement in the solution viscosity and the resistance of the polymer solutions to shearing. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1069–1077, 2000  相似文献   

20.
An amphiphilic poly(ethylene oxide)‐block‐poly(dimethylsiloxane) (PEO–PDMS) diblock copolymer was used to template a bisphenol A type epoxy resin (ER); nanostructured thermoset blends of ER and PEO–PDMS were prepared with 4,4′‐methylenedianiline (MDA) as the curing agent. The phase behavior, crystallization, hydrogen‐bonding interactions, and nanoscale structures were investigated with differential scanning calorimetry, Fourier transform infrared spectroscopy, transmission electron microscopy, and small‐angle X‐ray scattering. The uncured ER was miscible with the poly(ethylene oxide) block of PEO–PDMS, and the uncured blends were not macroscopically phase‐separated. Macroscopic phase separation took place in the MDA‐cured ER/PEO–PDMS blends containing 60–80 wt % PEO–PDMS diblock copolymer. However, the composition‐dependent nanostructures were formed in the cured blends with 10–50 wt % PEO–PDMS, which did not show macroscopic phase separation. The poly(dimethylsiloxane) microdomains with sizes of 10–20 nm were dispersed in a continuous ER‐rich phase; the average distance between the neighboring microdomains was in the range of 20–50 nm. The miscibility between the cured ER and the poly(ethylene oxide) block of PEO–PDMS was ascribed to the favorable hydrogen‐bonding interaction. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3042–3052, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号