首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
傅强 《高分子科学》2009,(6):843-849
 The bionanocomposites of soy protein isolate (SPI)/montmorillonite (MMT) have been prepared successfully via simple melt mixing, in which MMT was used as nanofiller and glycerol was used as plasticizer. Their structures and properties were characterized with X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), thermogravimetric analysis and tensile testing. XRD、TEM and SEM results indicated that the MMT layers could be easily intercalated by the SPI matrix even by simple melt processing. The exfoliated MMT layers were randomly dispersed in the protein matrix as MMT content was low (less than 5 wt%), an incomplete exfoliation was evident from SEM results, and some primary particles were observed as the MMT content was high (from 5 wt% to 9 wt%). A significant improvement of the mechanical strength and thermal stability of SPI/MMT nanocomposites has been achieved. Our work suggests that simple melt processing is an efficient way to prepare SPI/MMT nanocomposites with exfoliated structure.  相似文献   

2.
Structure, thermal properties, and influence of layered double hydroxide (LDH) fillers on photocrosslinking behavior of high‐density polyethylene (HDPE)/LDH nanocomposites have been studied in the present article. The X‐ray diffraction and transmission electron microscopy analysis demonstrate that the completely exfoliated HDPE/LDH nanocomposites can be obtained by controlling the organomodified LDH loading via melt‐intercalation. The data from the thermogravimetric analysis show that the HDPE/LDH nanocomposites have much higher thermal stability than HDPE sample. When the 50% weight loss was selected as a comparison point, the decomposition temperature of HDPE/LDH sample with 5 wt % LDH loading is ~40 °C higher than that of HDPE sample. The effects of UV‐irradiation on the HDPE/LDH nanocomposites show that the photoinitiated crosslinking can destroy the completely exfoliated structure to form the partially exfoliated structure, which decreased the thermal stability of the nanocomposites. However, the thermal stability of photocrosslinked samples can increase with increasing the UV‐irradiation time. The effect of LDH loading on the gel content of UV‐irradiated nanocomposites shows that the LDH materials can greatly absorb the UV irradiation and thus decrease the crosslinking efficiency. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3165–3172, 2006  相似文献   

3.
Exfoliated polystyrene (PS)/ZnAl layered double hydroxide (LDH) nanocomposites have been synthesized via emulsion polymerization in the presence of N-lauroyl-glutamate surfactants and long-chain n-hexadecane. The samples were characterized using elemental analysis, Fourier transform infrared (FTIR) spectrum, X-ray diffraction (XRD), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). The XRD and TEM results demonstrate that the exfoliated ZnAl-LDH layers of 50-70 nm width and about 1 nm thickness were well dispersed at molecular level in the PS matrix. And the completely exfoliated PS/LDH nanocomposites can be obtained even at the 10 wt% LDH loading. When the 50% weight loss was selected as a comparison point, the decomposition temperature of exfoliated PS/LDH sample with 5 wt% LDH was ca. 28 degrees C higher than that of pure PS.  相似文献   

4.
The purpose of this work was to study the effect of dendrimer modified clay minerals on the structure and properties of ethylene-propylene-diene monomer (EPDM) nanocomposites.Flame-retardant and dendrimer modified organic montmorillonite (FR-DOMt) was successfully prepared by Na+-montmorillonite, tetrahydroxymethyl phosphonium chloride (THPC), N, N-dihydroxyl-3-aminomethyl propionate, and boric acid. This dendritic type of organoclay (OC) was used in preparation of EPDM/FR-DOMt nanocomposites. The properties of these nanocomposites were studied. The dispersion status of the layered silicates in EPDM was revealed by X-ray diffractometer (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). XRD and TEM results showed that FR-DOMt was exfoliated in the EPDM matrix when 10 phr of FR-DOMt was incorporated. The mechanical behavior, thermal stability, and flame retardance of the samples were examined. The experimental data demonstrated that the EPDM hybrids owned an improved tensile strength and elongation at break. In addition, the nanocomposites exhibited higher thermal stability and flame retardance than that of unfilled EPDM matrix.  相似文献   

5.
Modification of clay with biopolymers has been of high interest in recent years. These new materials may be used for drug delivery systems and as biomaterials due to their high biocompatible properties and because they have the advantage of being biodegradable. The modification of montmorillonite (MMT) with chitosan was done in solution, at ratio 1:2 and at room temperature, or at stages of high temperature, and subjected to a microwave treatment. The influence of pH was observed upon the intercalation process.The obtained materials were characterized through X‐ray diffraction (XRD), thermogravimetrical analyses (TGA), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Using such a mixed treatment, the basal distance of modified MMT increased up to 3.6 nm. The results show the intercalation of chitosan between the layers of MMT and obtaining of intercalated and partial exfoliated nanocomposites. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
A Haake torque rheometer equipped with an internal mixer is used to study the influence of the amount of sodium montmorillonite (Na+‐MMT) and organically modified MMT (O‐MMT) on X‐ray diffraction (XRD), morphology, and mechanical characteristics of rigid poly (vinyl chloride) (PVC)/Na+‐MMT and PVC/O‐MMT nanocomposites, respectively. Results of XRD and transmission electron microscopy (TEM) indicate that MMT is partially encapsulated and intercalated in the rigid PVC/Na+‐MMT nanocomposites. However, results of XRD and TEM show MMT is partially intercalated and exfoliated in the rigid PVC/O‐MMT nanocomposites. Tensile strength, yield strength, and elongation at break of the rigid PVC/MMT nanocomposites were improved simultaneously with adding 1–3 wt % Na+‐MMT or O‐MMT with respect to that of pristine PVC. However, the addition of Na+‐MMT or O‐MMT should be kept as not more than 3 wt % to optimize the mechanical properties and the processing stability of the rigid PVC/MMT nanocomposites. SEM micrographs of the fractured surfaces of the rigid PVC/Na+‐MMT and PVC/O‐MMT nanocomposites both before and after tensile tests were also illustrated and compared. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2145–2154, 2006  相似文献   

7.
《中国化学会会志》2017,64(7):851-859
Recycled poly(ethylene terephthalate)/organomodified‐layered double hydroxide (PET /organo‐LDH ) nanocomposites were successfully synthesized via a melt‐extrusion method. In an attempt to improve the compatibility with PET , LiAl , MgAl , and ZnAl LDH surfaces were modified with sulfanilic acid (SAS ) via electrostatic interaction with LDH cationic layers. In PET nanocomposites containing SAS ‐modified LDH , the (00l ) X‐ray diffraction (XRD ) peaks originating from organo‐LDH were not observed, indicating that the organomodified LDH layers were fully exfoliated and homogeneously dispersed within the PET matrix, which was also confirmed by transmission electron microscopy analysis. However, PET nanocomposites containing SAS ‐modified LiAl , MgAl , and ZnAl LDH showed broad (00l ) XRD peaks, indicating that the organo‐LDH was partially exfoliated. Thermogravimetric analysis confirmed that the thermal stability of PET/SAS‐modified LDH was significantly improved, depending on the type and loading content of SAS‐modified LDH compared to that of pristine PET . PET nanocomposites containing well‐dispersed SAS‐modified LDH showed substantial enhancement of the storage modulus.  相似文献   

8.
Copolymer nanocomposites were prepared by suspension copolymerization of bis[2-(methacryloyloxy)ethyl] phosphate and methyl methacrylate, together with bis(2-ethylhexyl) phosphate layered double hydroxide and a montmorillonite, Cloisite 93A. X-ray diffraction and transmission electron microscopy were used to characterize the morphology of nanocomposites and the dispersion of additives in the polymer. The thermal stability of the nanocomposites has been assessed by thermogravimetric analysis and cone calorimetry has been used to study the fire properties. Bis[2-(methacryloyloxy)ethyl] phosphate not only copolymerized with MMA, but also aids in the dispersion of additives in PMMA. The copolymer nanocomposites have better dispersion and higher degradation temperature and more char mass than the corresponding PMMA nanocomposites. The largest peak reduction in the heat release rate of the copolymer nanocomposites are 52 and 65% for LDH and MMT additives, respectively.  相似文献   

9.
Nanofibers of the composite of pullulan (PULL), poly(vinyl alcohol) (PVA), and montmorillonite clay (MMT) were prepared using electrospinning method in aqueous solutions. Pullulan is an interesting natural polymer for many of its merits and good properties. Because of biocompatibility and non-toxicity of PVA, it could be used in numerous fields. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR), X-ray diffraction (XRD), and thermal gravimetric analysis (TGA) were done to characterize the PULL/PVA/MMT nanofibers morphology and properties. XRD patterns and FTIR data demonstrated that there were good interactions between PULL and PVA caused by possibly hydrogen bonds. Moreover, XRD data and TEM images indicated that intercalated and exfoliated MMT nanoplatelets can be obtained within the PULL/PVA/MMT nanofibers depending on the PULL/PVA blend ratios. Furthermore, the thermal stability and mechanical property (tensile strength) of PULL/PVA/MMT nanofibers could be enhanced more by exfoliated MMT nanoplatelets than intercalated structures of that nanoplatelets.  相似文献   

10.
Thermomechanical properties and crystallization behavior of poly(ethylene terephthalate) (PET) nanocomposites containing layered double hydroxide (LDH) were investigated. To enhance the compatibility between PET matrix and LDH, dimethyl 5‐sulfoisophthalate (DMSI) anion intercalated LDH (LDH‐DMSI) was synthesized by coprecipitation method, and its structure was confirmed by Fourier transform infrared (FTIR) spectrometer and X‐ray diffraction (XRD) measurements. Then, PET nanocomposites with LDH‐DMSI content of 0, 0.5, 1.0, and 2.0 wt% were prepared by in‐situ polymerization. The dispersion morphologies were observed by transmission electron microscopy (TEM) and XRD, showing that LDH‐DMSI was exfoliated in PET matrix. Thermal and mechanical properties, such as thermal stability, tensile modulus, and tensile yield strength of nanocomposites, were enhanced by exfoliated LDH‐DMSI nanolayers. However, elongation at break was drastically decreased with LDH loading owing to the increased stiffness and microvoids. The effect of exfoliated nanolayers, which acted as a nucleating agent confirmed by differential scanning calorimeter (DSC), on the microstructural parameters during isothermal crystallization, was analyzed by synchrotron small‐angle X‐ray scattering (SAXS). It is believed that nanocomposites could be crystallized more easily owing to the increased nucleation sites, which lead to the decrease of average amorphous region size and the long period with the increase of LDH‐DMSI content. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 28–40, 2007  相似文献   

11.
Summary: Preparation and morphology of high density polyethylene (HDPE)/ polyamide 6 (PA 6)/modified clay nanocomposites were studied. The ability of PA 6 in dispersing clays was used to prepare modified delaminated clays, which were then mixed with HDPE. Mixing was performed using melt processing in a torque rheometer equipped with roller rotors. After etching the materials with boiling toluene and formic acid at room temperature, the morphology was examined by SEM analyses, showing that the PA 6 formed the continuous phase and HDPE the dispersed phase. X-ray diffraction patterns show that the (001) peak of the clay is dramatically decreased and shifted to lower angles, indicating that intercalated/exfoliated nanocomposites are obtained. TEM analyses confirmed the typical structure of exfoliated nanocomposites. A scheme for the mechanism of exfoliation and/or intercalation of these HDPE /PA 6/ /organoclay nanocomposites is proposed.  相似文献   

12.
Chen  Wei  Qu  Bao‐Jun 《中国化学》2003,21(8):998-1000
An organo‐modified MgAl‐layered double hydroxide (OMgAl‐LDH) was successfully exfoliated in the xylene solution of polyethylene‐grafted‐maleic anhydride (PE‐g‐MA) under re‐fluxing condition. A PE‐g‐MA/MgAl‐LDH exfoliation nanocomposite was formed after the precipitation of PE‐g‐MA from the dispersion system. The structure and thermal property of the PE‐g‐MA/MgAl‐LDH exfoliation nanocomposite were characterized by X‐ray diffraction (XRD), transmission electron microscopy (TEM), and thermogravimetry analysis (TGA). The disappearance of d001 XRD peak of OMgAl‐LDH at 20 = 3.2° suggests that the MgAl hydroxide sheets are exfoliated in the nanocomposite. The TEM image shows that the MgAl hydroxide sheets of less than 70 nm in length or width are exfoliated and dispersed disorderly in PE‐g‐MA matrix. TGA profiles indicate that the PE‐g‐MA/MgAl‐LDH nanocomposite with 5 wt% OMgAl‐LDH loading shows a faster charring process in temperature range from 210 to 390 °C and a greater thermal stability beyond 390 °C than PE‐g‐MA does. The decomposition temperature of the nanocomposite is 25 °C higher than that of PE‐g‐MA as measured at 50% weight loss. The PE‐g‐MA/MgAl‐LDH nanocomposite is promising for application of flame‐retardant polymeric materials.  相似文献   

13.
This article addresses the synthesis of organically tailored Ni-Al layered double hydroxide(ONi-Al LDH) and its use in the fabrication of exfoliated poly(methyl methacrylate)(PMMA) nanocomposites. The pristine Ni-Al LDH was initially synthesized by co-precipitation method and subsequently modified using sodium dodecyl sulfate to obtain ONi-Al LDH. Nanocomposites of PMMA containing various amounts of modified Ni-Al LDH(3 wt%?7 wt%) were synthesized via solvent blending method to investigate the influence of LDH content on the properties of PMMA matrix. Several characterization methods such as X-ray diffraction(XRD), transmission electron microscopy(TEM), Fourier transform infrared spectroscopy(FTIR), rheological analysis, differential scanning calorimetry(DSC) and thermo gravimetric analysis(TGA), were employed to examine the structural, viscoelastic and thermal properties of PMMA/OLDH nanocomposites. The results of XRD and TEM examination confirm the formation of partially exfoliated PMMA/OLDH nanocomposites. The FTIR results elucidate that the characteristic bands for both pure PMMA and modified LDH are present in the spectra of PMMA/OLDH nanocomposites. Rheological analyses were carried out to examine the adhesion between polymer matrix and fillers present in the nanocomposite sample. The TGA data indicate that the PMMA nanocomposites exhibit higher thermal stability when compared to pure PMMA. The thermal decomposition temperature of PMMA/OLDH nanocomposites increases by 28 K compared to that of pure PMMA at 15% weight loss as a point of reference. In comparison with pure PMMA, the PMMA nanocomposite containing 7 wt% LDH demonstrates improved glass transition temperature(Tg) of around 3 K. The activation energy(Ea), reaction orders(n) and reaction mechanism of thermal degradation of PMMA/OLDH nanocomposites were evaluated using different kinetic models. Water uptake capacity of the PMMA/OLDH nanocomposites is less than that of the pure PMMA.  相似文献   

14.
通过原位聚合方法制备了以非水溶性聚合物(聚甲基丙烯酸甲酯,PMMA)为基体,与MgFe双氢氧化物(LDH)具有良好相容性的层离型纳米复合材料.采用小角、广角X射线衍射(XRD)及透射电镜(TEM)对纳米复合材料的微观结构进行了分析,通过热重分析(TG)和玻璃化转变研究了纳米复合材料在空气和氮气氛围下的热降解过程.实验结果表明,MgFe-LDH的引入显著提高了聚合物基体的热降解温度和玻璃化转变温度,纳米复合材料的热稳定性显著提高.其中含量1.6 wt%的层离型纳米复合材料在失重50%时的热降解温度比纯样提高约69℃.并且整个纳米复合体系的相容性良好,含量8.0 wt%的样品,其可见光透过率仍可达90%以上.  相似文献   

15.
Polypropylene(PP)/MgAl layered double hydroxide(MgAl LDH) nanocomposites were synthesized by refluxing PP and dodecyl sulfate-intercalated MgAl LDH[MgAl(DS)] in non-polar xylene. Their structure, thermal and crystallization properties were studied via X-ray diffraction(XRD), transmission electron microscopy(TEM), thermogravimetric analysis(TGA), differential scanning calorimetry(DSC), and polarized light microscopy(PLM). The nanoscaled dispersion of MgAl(DS) nanolayeres in the PP matrix was verified by the disappearance of the d(003) XRD diffraction peak of MgAl(DS) and observation of TEM image. The DSC data show that the SDS/LDH inorganic components negatively affect the crystallization properties of PP and decrease the size of PP spherulites because the inorganic components act as additional nuclei. The PP/MgAl LDH nanocomposites have a faster charring progress in a temperature range of 250―430 °C and a better thermal stability above 320 °C than pure PP.  相似文献   

16.
瞿保钧 《高分子科学》2010,28(4):563-571
<正>Synergistic effects of layered double hydroxide(LDH) with intumescent flame retardanct(IFR) of phosphorus-nitrogen (NP) compound in the polypropylene/ethylene-propylene-diene/IFR/LDH(PP/EPDM/IFR/LDH) nanocomposites and related properties were studied by X-ray diffraction(XRD),transmission electron microscopy(TEM),scanning electron microscopy(SEM),limiting oxygen index(LOI),UL-94 test,cone calorimeter test(CCT) and thermo-gravimetric analysis (TGA).The XRD and TEM results show that the intercalated and/or exfoliated nanocomposites can be obtained by direct melt-intercalation of PP/EPDM into modified LDH and that LDH can promote the IFR additive NP to disperse more homogeneously in the polymer matrix.The SEM results provide positive evidence that more compact charred layers can be obtained from the PP/EPDM/NP/LDH sample than those from the PP/EPDM/LDH and PP/EPDM/NP samples during burning.The LOI and UL-94 rating tests show that the synergetic effects of LDH with NP can effectively increase the flame retardant properties of the PP/EPDM/NP/LDH samples.The data from the CCT and TGA tests indicate that the PP/EPDM/NP/LDH samples apparently decrease the HRR and MLR values and thus enhance the flame retardant properties and have better thermal stability than the PP/EPDM/LDH and PP/EPDM/NP samples.  相似文献   

17.
Submicron fibers of the composite of poly(vinyl alcohol) (PVA), chitosan oligosaccharide [COS, (1→4)2-amino-2-deoxy-β-d-glucose], and montmorillonite clay (MMT) were prepared using electrospinning method with aqueous solutions. Scanning electron microscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), thermal gravimetric analyzer, and tensile strength testing machine (Zwick) were utilized to characterize the PVA/COS/MMT nanofiber mats morphology and properties. The PVA/COS ratio and MMT concentration play important roles in nanofiber mat properties. XRD and TEM data demonstrated that exfoliated MMT layers were well-distributed within nanofiber. It was also found that the mechanical property and thermal stability were increased with COS and MMT contents.  相似文献   

18.
For the improved dispersion of montmorillonite (MMT) in a polypropylene (PP) matrix, PP/MMT nanocomposites prepared via direct melt intercalation were further subjected to oscillating stress achieved by dynamic packing injection molding. The shear‐induced morphological changes were investigated with an Instron machine, wide‐angle X‐ray diffraction, scanning electron microscopy, and transmission electron microscopy. The original nanocomposites possessed a partly intercalated and partly exfoliated morphology. A transformation of the intercalated structure into an exfoliated structure occurred after shearing, and a more homogeneous dispersion of MMT in the PP matrix was obtained. However, the increase of the exfoliated structure was accompanied by the scarifying of the orientation of MMT layers along the shear direction. Some bended or curved MMT layers were found for the first time by TEM after shearing. However, the orientation of PP chains in the PP/MMT nanocomposites became very difficult under an external shear force; this indicated that the molecular motion of PP chains intercalated between MMT layers was highly confined. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1–10, 2003  相似文献   

19.
Conducting polypyrrole (PPy)‐montmorillonite (MMT) clay nanocomposites have been synthesized by the in situ intercalative polymerization method. The PPy‐MMT nanocomposites are characterized by field‐emission scanning electron microscopy (FE‐SEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD), ultraviolet–visible (UV–vis) spectroscopy, thermogravimetric analysis (TGA), and Fourier‐transform infrared (FTIR) spectroscopy. XRD patterns show that after polymerization by the in situ intercalative method with ammonium persulfate and 1 M HCl, an increase in the basal spacing from 1.2 to 1.9 nm was observed, signifying that PPy is synthesized between the interlayer spaces of MMT. TEM and SEM micrographs suggest that the coexistence of intercalated MMT layers with the PPy macromolecules. FTIR reveals that there might be possible interfacial interactions present between the MMT clay and PPy matrix. The study also shows that the introduction of MMT clay results in thermal stability improvement of the PPy. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2279–2285, 2008  相似文献   

20.
In this article, we address in situ synthesis of polyethylene terephthalate (PET) nanocomposites using the bis (2‐hydroxyethyl) phthalate monomer and inorganic layered materials (sulfanilic acid salt‐modified magnesium aluminum‐layered double hydroxides [MgAl LDH‐SAS] and Dimethyloctadecyl [3‐(trimethoxysilyl) propyl] ammonium chloride [DTSACl] and tetraethyl orthosilicate [TEOS]‐ modified clay [CL120‐DT]). The dispersion morphology of the synthesized nanocomposites was evaluated using XRD and TEM, from these results, it was confirmed that 0.5 wt% loaded PET/MgAl LDH‐SAS and PET/CL120‐DT nanocomposites have flocculated and intercalated morphologies, respectively. Thermomechanical analyses were performed by thermogravimetric analysis, dynamic mechanical analysis, and differential scanning calorimetry, respectively. Moreover, the water vapor transmission rate (WVTR) values of a pure PET, PET/CL120‐DT 0.5 wt%, and PET/MgAl LDH‐SAS 0.5 wt% nanocomposites were found to be 49, 45, and 46 g·m?2·day?1, respectively. Furthermore, the gas barrier properties of PET composite films containing various amounts of inorganic nanoparticles were investigated using Gas permeability analysis (GPA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号