首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A reversibly cross‐linked epoxy resin with efficient reprocessing and intrinsic self‐healing was prepared from a diamine Diels‐Alder (DA) adduct cross‐linker and a commercial epoxy oligomer. The newly synthesized diamine cross‐linker, comprising a DA adduct of furan and maleimide moieties, can cure epoxy monomer/oligomer with thermal reversibility. The reversible transition between cross‐linked state and linear architecture endows the cured epoxy with rapid recyclability and repeated healability. The reversibly cross‐linked epoxy fundamentally behaves as typical thermosets at ambient conditions yet can be fast reprocessed at elevated temperature like thermoplastics. As a potential reversible adhesive, the epoxy polymer with adhesive strength values about 3 MPa showed full recovery after repeated fracture‐thermal healing processes. The methodology explored in this contribution provides new insights in modification of conventional engineering plastics as functional materials. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2094–2103  相似文献   

2.
橡胶材料通常因经过硫化及补强等工艺处理而呈现出热固性, 因而难以被回收处理, 容易造成严重的资源浪费和环境污染. 本文通过在聚丁二烯上修饰羧酸基团, 再加入锌离子(Zn2+)与羧酸配位, 制备了基于金属配位键交联的自修复橡胶(PB-COOH/Zn2+). 该橡胶具有良好的机械性能和优秀的自修复及重塑性能, 在70 ℃下修复3 h, 其韧性可以恢复到初始强度, 修复效率可达100%. PB-COOH/Zn2+较高的聚合物链段运动能力及配位键交联网络良好的动态性不仅赋予其优异的修复性能, 还使得其在较温和的条件下可以进行多次重塑, 在70 ℃及5 MPa的条件下重塑3次仍能保持原有的机械性能. 此外, 通过在PB-COOH/Zn2+中掺杂适量的碳纳米管, 不仅增强了其机械性能, 还使其具备了电致修复及传感能力, 扩宽了PB-COOH/Zn2+作为环境友好型材料的应用前景.  相似文献   

3.
A self-healing carbon/epoxy composite was fabricated with the incorporation of healing agent loaded core-shell nanofibers between carbon fiber fabric layers. The healing agents, consisting of two components, a low viscosity epoxy resin and its amine-based curing agent, were encapsulated in Styrene acrylonitrile (SAN) nanofibers via a coaxial electrospinning method. Transmission electron microscope (TEM), Fourier Transform Infrared (FTIR), and thermogravimetric analysis (TGA) results confirmed the successful encapsulation of both epoxy and curing agent in SAN nanofiber shells. TGA and the extraction method confirmed a high encapsulation yield (90% for the epoxy resin and 97% for the curing agent). Mechanical studies of the hybrid composite showed that embedding the fabricated core-shell nanofibers did not lead to a reduction in the mechanical properties of host composite, which was corroborated with statistical analysis. Mechanical evaluations and curing behavior studies both showed that incorporation of the aforementioned nanofibers between carbon layers can imbue the conventional carbon/epoxy composite with a self-healing ability, allowing it to repair itself to restore its mechanical properties for up to three cycles at room temperature in absent of any external driving force.  相似文献   

4.
Polymers crosslinked via furan/maleimide thermo-reversible chemistry have been extensively explored as reprocessable and self-healing thermosets and elastomers. For such applications, it is important that the thermo-reversible features are reproducible after many reprocessing and healing cycles. Therefore, side reactions are undesirable. However, we have noticed irreversible changes in the mechanical properties of such materials when exposing them to temperatures around 150 °C. In this work, we study whether these changes are due to the self-reaction of maleimide moieties that may take place at this rather low temperature. In order to do so, we prepared a furan-grafted polyketone crosslinked with the commonly used aromatic bismaleimide (1,1′-(methylenedi-4,1-phenylene)bismaleimide), and exposed it to isothermal treatments at 150 °C. The changes in the chemistry and thermo-mechanical properties were mainly studied by infrared spectroscopy, 1H-NMR, and rheology. Our results indicate that maleimide self-reaction does take place in the studied polymer system. This finding comes along with limitations over the reprocessing and self-healing procedures for furan/maleimide-based reversibly crosslinked polymers that present their softening (decrosslinking) point at relatively high temperatures. On the other hand, the side reaction can also be used to tune the properties of such polymer products via in situ thermal treatments.  相似文献   

5.
A series of Diels-Alder reaction cross-linked thermosets with recyclability and healability were prepared from furan-containing aromatic polyamide and bismaleimides with different chemical structures.The structures of synthesized bismaleimides were confirmed by 1 H nuclear magnetic resonance(1 H-NMR)spectroscopy;their reversible cross-linking with the furanic polyamide was further detected by 1 H-NMR technique and sol-gel transition behavior.The dynamic mechanical analysis and tensile test revealed the variable thermal and mechanical properties of thermosets cross-linked by different bismaleimides and with different molar ratios of maleimide group to furan group(Ima/fur).The tensile test also demonstrated that the better recyclability and solvent-assisted healability of thermosets cross-linked could be achieved by more flexible bismaleimides.This work is expected to provide valuable information for design of recyclable and healable high-performance thermosets with desired properties.  相似文献   

6.
以三羟甲基丙烷三缩水甘油醚(TTE)为基体, 2,2′-(1,4-亚苯基)-双[4-硫醇1,3,2-二氧杂戊烷](BDB)和3,3-二硫代二丙酸(DTDPA)为交联剂, 通过环氧-巯基“点击”反应和环氧-羧酸酯化反应, 制备了基于多重动态共价键(硼酸酯键、 二硫键和酯键)的环氧类玻璃网络. 利用红外光谱和拉曼光谱对其结构进行了表征, 结果表明, 环氧类玻璃中不仅存在硼酸酯键、 二硫键和酯键, 还存在可逆氢键, 并且大量氢键的存在能提高环氧类玻璃的交联度. 对所得环氧网络的热稳定性、 热机械性能和力学性能进行了测试, 并对基于多重动态共价键环氧网络进行了自修复、 焊接、 形状记忆和再加工能力测试. 结果表明, 在80 ℃下可实现网络的完全自修复、 再加工与焊接, 且焊接后样品的力学性能(拉伸强度)恢复率在80%以上, 具有优异的功能性.  相似文献   

7.
Crosslinked polymeric materials, which exhibit thermal remendability and removability through Diels–Alder (DA) and retro‐DA reactions, were obtained from using multifunctional maleimide and furan compounds as monomers. The synthesized monomers possess low melting points and good solubility in organo solvents to show excellent processing properties. The performance of DA and retro‐DA reactions were demonstrated with DSC and FTIR measurements. High performance of thermal remendablility and removability of the crosslinked materials were observed with SEM and solvent tests. These materials were applicable in advanced encapsulants and structural materials. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 905–913, 2006  相似文献   

8.
The effects of furan and maleimide substitution on the dynamic reversibility of their Diels-Alder reactivity have been investigated computationally and by (1)H NMR spectroscopy. Furan and furan derivatives bearing methoxy, methyl, or formyl groups at their 2- or 3-positions were investigated with maleimide and maleimide derivatives bearing N-methyl, N-allyl, and N-phenyl substituents. Computational predictions indicate that electronic and regiochemical effects of furan substitution significantly influence their Diels-Alder reactivity with maleimide, with reaction free energies of exo adduct formation ranging from ΔG = -9.4 to 0.9 kcal/mol and transition state barriers to exo adduct formation ranging from ΔG(?) = 18.9 to 25.6 kcal/mol. Much less variation was observed for the reactivity of N-substituted maleimide derivatives and furan, with reaction and transition state free energies each falling within a range of 1.1 kcal/mol. Dynamic exchange experiments monitored by (1)H NMR spectroscopy support computational predictions. The results indicate the reactivity and reversibility of furan-maleimide cycloadditions can be tuned significantly through the addition of appropriate substituents and have implications in the use of furan and maleimide derivatives in the construction of thermally responsive organic materials.  相似文献   

9.
利用呋喃环侧基与单烯化合物所发生的Diels-Alder( DA)环加成反应,大幅度降低呋喃环在共聚物中的含量,从而制备出空气氛下稳定性较好的二氧化碳共聚物.研究发现DA反应的环加成程度越高,呋喃甲基缩水甘油醚/二氧化碳共聚物(PFGEC)的空气稳定性越好,当环加成程度超过70%时,可以得到稳定产物.DA反应条件对环加...  相似文献   

10.
In this work, pendant groups with both furan and maleimide moieties were incorporated into a polymethacrylate copolymer with lauryl methacrylate as comonomer to yield a one‐system Diels–Alder (DA) polymer. A combined Fourier transform infrared (FTIR) spectroscopy and rheological study was performed to quantify the extent of the reversible DA reaction and the resulting changes in mechanical properties of the polymer. The kinetics of the retro‐Diels–Alder (rDA) reaction was studied at different temperatures to determine an enthalpy of activation. Control polymers with only one functional moiety, that is, the furan or maleimide, were also synthesized to study the differences in viscoelastic behavior and the absence of self‐healing. Microscratch tests were performed to obtain information about the disappearance of well‐defined intentional surface scratches under different healing conditions. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1669–1675  相似文献   

11.
Effectively improving the mechanical properties and thermal resistance of epoxy shape‐memory polymers (ESMPs) without affecting their shape‐memory performance is necessary to expand these polymers in practical applications. In this article, modified multi‐walled carbon nanotubes (MWCNTs) were prepared and used as efficient reinforcement for enhancing the comprehensive properties of ESMPs. Increases of nearly 289% to 444% for impact strength and 112% to 184% for tensile force were obtained by adding only 0.1 to 1 wt% epoxy‐modified MWCNTs. The addition of unmodified and carboxyl‐modified MWCNTs was also investigated but showed less impact on the mechanical properties of the ESMPs than epoxy‐modified MWCNTs. Thermogravimetry analysis (TGA) and dynamic mechanical analyses (DMA) showed that less than 1 wt% modified MWCNTs can enhance the heat resistance of ESMPs greatly. Although the shape recovery time for composite materials increased upon adding the MWCNTs, the entire recovery time was still less than 1 minute, and the shape recovery rate was relatively high, nearly 100%.  相似文献   

12.
The pseudo-intramolecular Diels-Alder (DA) reaction between a 2-substituted furan (1) and a N-maleimide derivative (2) has been analyzed using DFT methods. Formation of two hydrogen bonds between the appendages on furan and maleimide derivatives favors thermodynamically the formation of a molecular complex (MC1) through an efficient molecular recognition process. The large enthalpy stabilization associated with the molecular recognition overcomes the unfavorable activation entropy associated with the bimolecular process. As a consequence, the subsequent DA reaction is clearly accelerated through a pseudo-intramolecular process.  相似文献   

13.
叶霖  张少锋  闵嘉康  马丽  唐涛 《应用化学》2019,36(4):451-458
利用呋喃和马来酰亚胺之间的可逆Diels-Alder反应,对不相容的聚甲基丙烯酸正丁酯(Poly(n-butyl methacrylate),PBMA)/聚苯乙烯(Polystyrene,PS)合金进行了增容研究。 首先,通过原子转移自由基聚合(ATRP)共聚合成侧基含呋喃基团的聚甲基丙烯酸正丁酯(P(BMA-co-FMA)),并通过后反应改性合成侧基含马来酰亚胺基团的聚苯乙烯(MPS),然后利用呋喃和马来酰亚胺基团之间的Diels-Alder反应促使该共混物中两种高分子的相容性得到明显改善,本实验通过核磁共振波谱仪(NMR)表征验证了功能化高分子及其共混物中的Diels-Alder反应,并通过透射电子显微镜观测相分离结构变化和差示扫描量热法测定相变温度证明了相容性的明显改善。 共混物可以进行热塑性加工,且其相形态和力学性能可以通过控制反应时间予以调节,三点弯曲试验发现随着反应时间的延长共混物逐渐由韧性材料向脆性材料转变。  相似文献   

14.
Novel trifunctional monomers based on renewable resources were prepared and subsequently polymerized via the Diels‐Alder (DA) polycondensation between furan and maleimide complementary moieties. Three basic approaches were considered for these nonlinear DA polycondensations, namely the use of (i) a bisfuran monomer in combination with a trismaleimide (A2 + B3 system) and (ii) a trisfuran monomer in conjunction with a bismaleimide (A3 + B2 system) leading to branched or crosslinked materials, and (iii) the use of monomers incorporating both furan and maleimide end groups (A2B or AB2 systems), which lead to hyperbranched structures. The application of the retro‐DA reaction to the ensuing polymers confirmed their thermoreversible character. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

15.
Mechanical properties of microcapsule shell have great influence on microcapsule suitability as a mechanical trigger in a self-healing composite. The elastic modulus and hardness of polymethyl methacrylate (PMMA) microcapsules containing epoxy prepolymer (EC 157) and pentaerythritol tetrakis (3-mercaptopropionate) (PETMP) as healing agents were investigated using nanoindentation technique. The influence of the PMMA average molecular weight (MW), the kind of core material, and the mechanical mixing rate on the mechanical properties of the microcapsule shell were studied using the Taguchi experimental design approach. The results indicated that the most important factors which affect the elastic modulus and the hardness of microcapsules shell are the Mw of PMMA and the kind of core material. The average elastic modulus of PMMA shell of epoxy and mercaptan-loaded microcapsules was found between 2.386 and 3.495 GPa. The hardness of PMMA shell of healing agent microcapsules was obtained in the range of 0.064–0.219 GPa. This constitutes essential knowledge in order to design capsules with tailored properties for self-healing materials.  相似文献   

16.
We synthesized biobased poly(2,5‐furandimethylene succinate‐co‐butylene succinate) [P(FS‐co‐BS)] copolymers by polycondensation of 2,5‐bis(hydroxymethyl)furan, 1,4‐butanediol, and succinic acid. These copolymers could be crosslinked to form network polymers by means of a reversible Diels–Alder reaction with bis‐maleimide. The thermal properties, mechanical properties, and healing abilities of the P(FS‐co‐BS)s and the network polymers were investigated. The mechanical properties of the network polymers depended on the comonomer composition of the P(FS‐co‐BS)s and the maleimide/furan ratio in the network polymers. Some of the copolymers exhibited healing ability at room temperature, and their healing efficiency was enhanced by solvent or heat. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 216–222  相似文献   

17.
Remending properties of a network polymer with reversible reactivity are described. The network structure is constructed by a Diels-Alder (DA) reaction between furyl-telechelic poly(ethylene adipate) (PEAF2) and a tris-maleimide, M3. When a film sample was cut into two pieces and the cut surfaces were kept in contact with each other at 60 °C, rejoining of the cut pieces was observed. This mending was induced by the reversible cross-linking reaction bridging the cut surfaces. At the cut front, the “weak” DA adducts are selectively dissociated sacrificially to release the stress so as to protect the chemical structure of the prepolymer and the linker against the scission or degradation. The dissociated furan and maleimide readily reconnect by forward DA reaction to mend the material. The remending was also observed for the samples kept at room temperature after melting at 60 °C. So, the PEAF2 network polymer is a thermo-responsive mendable material in which crack healing is induced by a prompt thermal stimulus.  相似文献   

18.
Although a variety of dynamic covalent bonds have been successfully used in the development of diverse sustainable thermosetting polymers and their composites, solving the trade-off between recovery efficiency and comprehensive properties is still a major challenge. Herein, a “one-stone-two-birds” strategy of lower rotational energy barrier (Er) phosphate-derived Diels–Alder (DA) cycloadditions was proposed for easily recyclable carbon fiber (CF)-reinforced epoxy resins (EPs) composites. In such a strategy, the phosphate spacer with lower Er accelerated the segmental mobility and dynamic DA exchange reaction for network rearrangement to achieve high-efficiency repairing, reprocessing of the EPs matrix and its composites and rapid nondestructive recycling of CF; meanwhile, incorporating phosphorus-based units especially reduced their fire hazards. The resulting materials simultaneously showed excellent thermal/mechanical properties, superb fire safety and facile recyclability, realizing the concept of recycling for high-performance thermosetting polymers and composites. This strategy is of great significance for understanding and enriching the molecular connotation of DA chemistry, making it potentially applicable to the design and development of a wide range of dynamic covalent adaptable materials toward practical cutting-edge-tech applications.  相似文献   

19.
For waterborne polyurethanes (PUs), balancing robust mechanical performances and excellent self-healing ability is a great challenge. Here, we show that this goal can be achieved by a rational tuning of the PU chemistry. In particular, we synthesized an anionic self-healing waterborne PU using acetone process, in which 2,2-bis(hydroxymethyl)propionic acid (DMPA) serves as inner emulsifier, thermally dynamic Diels-Alder bonds act as healing motifs and hexamethylene diisocyanate trimer is the crosslinker. The mechanical performance can be tuned by increasing DMPA concentration due to the gradually increased hard segment contents and ionic interactions. The tensile stress and elongation at break of films containing 5.6 wt% of DMPA are 24.9 MPa and 911.9%, respectively. Moreover, dynamic reversible Diels-Alder bonds located in main chains and cross-linking points ensure excellent self-repairing capability. Upon mechanical damage, the tensile stress can be restored to 95% of its initial value. Electrochemical impedance spectroscopy also points out an outstanding barrier ability and excellent corrosion protection performance of the coatings, which can be recovered even after serious damages.  相似文献   

20.
Multi‐walled carbon nanotubes (MWCNTs) were acidified with nitration mixture, and the Fe2O3‐MWCNTs (iron oxide coated multi‐walled carbon nanotubes) hybrid material via sol‐gel method then verified the results through scanning electron microscope, X‐ray diffraction, and thermal gravimetric analysis. We modified the hybrid material with silane coupling agent (KH560), Fe2O3‐MWCNTs/epoxy, MWCNTs/epoxy composites coating, and the pure epoxy coatings were respectively prepared. The properties of the composite coatings were tested through the electrochemical workstation (electrochemical impedance spectroscopy), shock experiments, and thermal gravimetric analysis. Finally, we used scanning electron microscope to observe the surface conditions of the coatings. The results show that Fe2O3‐MWCNTs have good dispersion in the epoxy resin, and the Fe2O3‐MWCNTs/epoxy composite coatings have enhanced mechanical properties and corrosion resistance. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号