首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Novel trifunctional monomers based on renewable resources were prepared and subsequently polymerized via the Diels‐Alder (DA) polycondensation between furan and maleimide complementary moieties. Three basic approaches were considered for these nonlinear DA polycondensations, namely the use of (i) a bisfuran monomer in combination with a trismaleimide (A2 + B3 system) and (ii) a trisfuran monomer in conjunction with a bismaleimide (A3 + B2 system) leading to branched or crosslinked materials, and (iii) the use of monomers incorporating both furan and maleimide end groups (A2B or AB2 systems), which lead to hyperbranched structures. The application of the retro‐DA reaction to the ensuing polymers confirmed their thermoreversible character. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

2.
Motivated by the growing demand for greener and sustainable polymer systems, self‐healing elastomers were prepared by emulsion polymerization of terpene and furfural‐based monomers. Both the method and the monomers were green and sustainable. The synthesized copolymers showed molecular weights between 59,080 and 84,210 Da and glass‐transition temperature (Tg) between ?25 and ?40 °C, implying rubbery properties. A set of one‐dimensional (1D) and two‐dimensional (2D) NMR spectroscopy supported the formation of the copolymer and nuclear spin–spin coupling in the copolymer. Reactivity ratios were determined by conventional linear method. A thermoreversible network was achieved for the first time by reacting the furan‐based polymer with bismaleimide (BM) as a crosslinker, via a Diels?Alder (DA) coupling reaction. The reversible nature of the polymer network was evidenced from infrared and NMR spectroscopy. The thermoreversible character of the DA crosslinked adduct was confirmed by applying retro‐DA reaction (observed in differential scanning calorimeter [DSC] analysis) and mechanical recovery was verified by repeated heating and cooling cycles. The network polymers displayed excellent self‐healing ability, triggered by heating at 130 °C for 4–12 h, when their scratched surface was screened by microscopic visualization. The healing efficiency of the crosslinked DA‐adduct was calculated as 78%, using atomic force microscopy. This work provides a green and efficient approach to prepare new green and functional materials. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 738–751  相似文献   

3.
Biomass‐derived furfuryl methacrylate (FMA) has been successfully polymerized for the first time by anionic polymerization to produce atactic (at‐), isotactic (it‐), or syndiotactic (st‐) poly(furfuryl methacrylate) (PFMA), depending on initiator structure and reaction conditions. Thermal properties of the PFMA materials are strongly affected by the polymer tacticity. Most notably, while both isotactic and syndiotactic polymers can undergo inter‐ or intrachain crosslinking reactions when heated to 290 °C, there is no evidence for the atactic polymer to perform the same reaction. Furthermore, the PFMA tacticity also greatly affects the amount of stable carbonaceous materials it produces when heated to 650 °C, with st‐PFMA forming the largest amount of such materials (26.9%), as compared to only 5.6% by at‐PFMA. Using the Diels–Alder (DA) “click reaction” between the reactive furfuryl group within the PFMA polymers as the diene equivalent and a bismaleimide as the dienophile, thermoreversible smart polymers have been successfully prepared. Thermoreversibility of the preformed crosslinked polymers has been demonstrated, thanks to the facile retro‐DA reaction upon heating and the DA reaction upon cooling of such self‐healing materials. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2793–2803  相似文献   

4.
Four different fluorinated methyl‐ and phenyl‐substituted 4‐(4‐hydroxyphenyl)‐2‐(pentafluorophenyl)‐phthalazin‐1(2H)‐ones, AB‐type phthalazinone monomers, have been successfully synthesized by nucleophilic addition–elimination reactions of methyl‐ and phenyl‐substituted 2‐((4‐hydroxy)benzoyl)benzoic acid with 1‐(pentafluorophenyl)hydrazine. Under mild reaction conditions, the AB‐type monomers underwent self‐condensation polymerization reactions successfully and gave fluorinated poly(phthalazinone ether)s with high molecular weights. Detailed structural characterization of the AB‐type monomers and fluorinated polymers was determined by 1H NMR, 19F NMR, FTIR, and GPC. The solubility, thermal properties, mechanical properties, water contact angles, and optical absorption of the polymers were evaluated. The polymers had high Tgs varying from 337 to 349 °C and decomposition temperatures (Td, 25 wt %) above 409 °C. Tough, flexible films were cast from THF and chloroform solutions. The films showed excellent tensile strengths ranging from 70 to 85 MPa with good hydrophobicities with water contact angles higher than 95.5 °C. The polymers had absorption edges below 340 nm and very low absorbance per cm at higher wavelengths 500–2500 nm. These results indicate that the polymers are promising as high performance materials, for example, membranes and hydrophobic materials. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1761–1770  相似文献   

5.
Novel cross‐linked polyphosphazenes with remendable capacity have been synthesized through the Diels‐Alder reactions. Their structure and properties were characterized by NMR, FT‐IR, GPC, DSC, TGA SEM, and polarizing microscope. The process of Diels‐Alder reaction (D‐A reaction) and retro‐Diels‐Alder reaction (retro‐D‐A reaction) have been investigated by FT‐IR, UV, and DSC. The cross‐linked polyphosphazenes exhibited remendable capability only need a thermal treatment when they were cut by blade, any other treatments such as additional monomer or catalyst, surface treatment or pressure were not needed. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

6.
In this work, pendant groups with both furan and maleimide moieties were incorporated into a polymethacrylate copolymer with lauryl methacrylate as comonomer to yield a one‐system Diels–Alder (DA) polymer. A combined Fourier transform infrared (FTIR) spectroscopy and rheological study was performed to quantify the extent of the reversible DA reaction and the resulting changes in mechanical properties of the polymer. The kinetics of the retro‐Diels–Alder (rDA) reaction was studied at different temperatures to determine an enthalpy of activation. Control polymers with only one functional moiety, that is, the furan or maleimide, were also synthesized to study the differences in viscoelastic behavior and the absence of self‐healing. Microscratch tests were performed to obtain information about the disappearance of well‐defined intentional surface scratches under different healing conditions. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1669–1675  相似文献   

7.
The autocatalytic thermal polymerization behavior of three benzoxazine monomers containing carboxylic acid functionalities is reported. Several mixtures of these carboxylic monomers and 3‐phenyl‐3,4‐dihydro‐2H‐1,3‐benzoxazine were prepared and their thermal polymerization behavior was analyzed by differential scanning calorimetry. The acid character of these reactive monomers increases the concentration of oxonium species, thus catalyzing the benzoxazine ring opening reaction. In this way the polymerization temperature decreased by as much as 100 °C in some cases. The existence of decarboxylation processes at high temperatures has been established by FTIR‐ATR and related to the increase in thermal stability observed by TGA in some cases. A relationship between the presence of carboxylic groups in the resulting materials and their flame retardancy behavior has also been established. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6091–6101, 2008  相似文献   

8.
Polymers having polyhedral oligomeric silsesquioxane (POSS) in the main chains are an important class of organic–inorganic hybrid materials. Despite the increasing attention to the POSS polymers, variation of the monomers is still limited. Herein, we have proposed side‐opening POSS (SO‐POSS) monomers. Platinum‐catalyzed hydrosilylation polymerization proceeded to produce polysiloxanes having SO‐POSS in the main chains. The obtained polysiloxanes showed good solubility, high thermal stability, high transparency, and tunable reflective index. In addition, cyclic compounds were obtained during the investigation of the polymerization, and were synthesized with high selectivity under the slightly diluted conditions. The obtained cyclic compounds showed high thermal stability due to the silsesquioxane backbone, and the high dispersibility as a filler in poly(methyl methacrylate) was demonstrated. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2243–2250  相似文献   

9.
Side‐chain liquid‐crystalline polymers (SCLCPs) as nucleating agents for high‐density polyethylene (HDPE) were investigated. For this purpose, the molecular architectures of four different vinyl monomers with liquid‐crystalline properties were designed and prepared with 1‐butanol, 1‐pentanol, 4‐hydroxybenzoic acid, hydroquinone, and acryloyl chloride as the starting materials through alkylation and acylation reactions. The corresponding polymers were synthesized by homopolymerization in 1,4‐dioxane with benzoyl peroxide as the initiator at 60 °C. Both the monomers and the synthesized polymers were characterized with elemental analysis, Fourier transform infrared, and 1H NMR measurements. Differential scanning calorimetry, thermogravimetric analysis, and hot stage polarized optical microscopy were employed to study the phase‐transition temperature, mesophase texture, and thermal stability of the liquid‐crystalline polymers. The results showed that all the polymers had thermotropic liquid‐crystalline features. Being used as nucleating agents, SCLCPs effectively increased both the crystallization temperature and rate and, at the same time, raised the crystallinity for HDPE. In comparison with common small‐molecule nucleating agents, such as 1,3:2,4‐dibenzylidenesorbitol, SCLCPs are more efficient and are indeed excellent nucleating agents for HDPE. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3067–3078, 2005  相似文献   

10.
New crosslinkable polymers with a nonlinear optical (NLO) active chromophore as a pendant group were synthesized by condensation chain polymerization via palladium‐catalyzed carbon–carbon coupling reactions. The polymerization yields were almost quantitative between the diiodobenzene (DIB) and diethyldipropargyl malonate (DEDPM) or 4‐(dimethylamino)‐4′‐(6‐dipropargylacetoxypropylsulfonyl)stilbene (DASS‐6) monomers. To improve the molecular weight and mechanical properties of the NLO active polymer, we carried out the copolymerization with DIB and DASS‐6 with various feed ratios of DEDPM. The resulting polymers were soluble in organic solvents and spun‐cast onto indium tin oxide‐coated glass substrates to make thin films. The molecular structures of the resulting polymers were characterized with various instrumental methods to confirm the carbon–carbon coupling reactions between the DIB and diacetylene monomers. The absorption of the ultraviolet–visible spectrum of the resulting polymers was drastically reduced after thermal curing at 160 °C because of the crosslinking of the reactive acetylene group in the polymer backbone. The electrooptic coefficient (r33) measured at 1.3 μm ranged from 7 to 15 pm/V. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4025–4034, 2001  相似文献   

11.
Willgerodt–Kindler type reactions of dialdehydes and diamines in the presence of sulfur were investigated for preparation of polythioamides. The one‐pot, three‐component polycondensation afforded various polythioamides in moderate to good yields. The appropriate reaction conditions were examined for the separate monomers. The results led us to the proposed mechanism for the polycondensation including formation of the intermediate Schiff base polymers followed by the successive nucleophilic attack of polysulfide anions to the azomethine units to give the thioamide groups. Structure, solubility, and thermal properties of the polythioamides were also compared with those of analogous polyamides. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3739–3750, 2001  相似文献   

12.
To overcome the defects of the thermal instability of azobenzene, a series of novel photochromic, chiral, liquid‐crystalline monomers and polymers were synthesized from (+)‐camphor. The copolymerization of the photochromic monomers with comonomers was carried out. The synthesized monomers and polymers were identified with nuclear magnetic resonance, Fourier transform infrared, and elemental analysis. The composition of the copolymers was estimated with elemental analysis. The specific rotation of the chiral compounds and polymers was evaluated. The thermal stability and phases of the polymers during heating and cooling cycles were studied with differential scanning calorimetry and thermogravimetric analysis. The phases of the polymers were identified with polarized optical microscopy textures and X‐ray diffraction analysis. The distance between the layers of smectic liquid crystals was estimated from the diffraction angles. Photoisomerization of the configurational E/Z structures was investigated with an ultraviolet–visible spectrophotometer with 300‐nm ultraviolet irradiation. The thermal stability of the Z‐structural segment in the polymers was confirmed through the heating of the polymer at 70 °C for over 10 h. The photoisomerization and thermal stability of the C?C bond in the polymeric materials were demonstrated through a series of novel chiral polymers synthesized in this investigation. Both the polarity of the center part and the molecular length at the ends of the molecules were found to be necessary factors for the formation of liquid‐crystalline molecules. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2026–2037, 2007  相似文献   

13.
Carbohydrate‐modified polysiloxanes have been presented several times within the last decade. In this work, a new route to carbohydrate‐segmented polysiloxanes is presented. A series of allyl‐group‐containing bifunctional carbohydrate derivatives was synthesized and reacted with hydrodimethylsilyl‐terminated polysiloxane in hydrosilylation reactions with Speier's catalyst. The carbohydrate monomers and the resulting materials were fully characterized with 1H and 13C NMR spectroscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3814–3822, 2005  相似文献   

14.
Epoxy resins are important thermosetting resins widely employed in industrial fields. Although the epoxy–imidazole curing system has attracted attention because of its reactivity, solidification of a liquid epoxy resin containing imidazoles proceeds gradually even at room temperature. This makes it difficult to use them for one‐component epoxy resin materials. Though powder‐type latent curing agents have been used for one‐component epoxy resin materials, they are difficult to apply for fabrication of fine industrial products due to their poor miscibility. To overcome this situation and to improve the shelf life of epoxy–imidazole compositions, we have developed a liquid‐type thermal latent curing agent 1 , generating an imidazole with a thermal trigger via a retro‐Michael addition reaction. The latent curing agent 1 has superior miscibility toward epoxy resins; in addition, it was confirmed that the epoxy resin composition has both high reactivity at 150 °C, and long‐term storage stability at room temperature. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2680–2688  相似文献   

15.
A new class of container molecules is described and the first steps in producing protypes are reported. Central to the approach is the formation of polynorbornanes with cyclobutene‐1,2‐difurfuryl esters at the terminus or similar functionality at the bridgehead of a central norbornane subunit. The synthesis of the furfuryl starting materials is described as well as their anthracenyl counterparts. Conversion to the container systems involved the intermolecular linking of the furfuryl or anthracene by treatment with dimethyl acetylene dicarboxylate (DMAD) in a Diels–Alder (DA) protocol under thermal or high‐pressure (HP) conditions. In practice, no intermolecular linking occurred between the norbornane substrates and only products from DA 1:1‐addition with DMAD were produced. Intramolecular addition of one of the furfuryl units onto the cyclobutene π‐bond was detected under HP conditions, and this intermolecular product was capable of isolation and characterization by working at room temperature or below, but reverted to starting material above room temperature. When conducted in the presence of DMAD, a single 1:1‐adduct was obtained in which one furfuryl moiety was intramolecularly cyclized and the other present as the DMAD adduct; again this product underwent retro‐DA reaction at 40°C. Similar intermolecular cyclization was observed with the bis‐anthracenyl esters. The stereoselectivity of the intermolecular attack of the furfuryl diene with the dienophilic cyclobutene gave a single adduct by endo‐face attack in which the oxa‐bridge is endo‐positioned. Quantum chemical DFT calculations (B3LYP) predict that the formation of the endo‐isomer is kinetically favored and that relief of ring strain enhances the rate of retro‐Diels–Alder in the tethered system.  相似文献   

16.
A tailor‐made polymethacrylate bearing a pendant furfuryl group was prepared by atom transfer radical polymerization (ATRP), an important method of recent advances in controlled radical polymerization. It was otherwise difficult to prepare via conventional radical polymerization, because of several side reactions involving the reactive diene functionality of the furfuryl group. Successful Diels–Alder (DA) chemistry was carried out using this reactive furfuryl group of the tailor‐made polymer as diene and a bismaleimide as a dienophile. Interestingly, the resultant material was observed to be thermoreversible as evidenced by FT‐IR and DSC studies. This example of application of a tailor‐made polymer having controlled molecular architecture and with reactive diene functionality in DA chemistry will open new possibilities to prepare newer tailor‐made reversible materials. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4441–4449, 2007  相似文献   

17.
The free radical polymerization of four methylated cyclic allylic sulfides was examined with reference to their polymerization volume shrinkage and the effect of ring size on reactivity. The compounds examined were 2‐methyl‐5‐methylene‐1,3‐dithiane ( 5 ) (solid), 2‐methyl‐6‐methylene‐1,4‐dithiepane ( 6 ) (liquid), 6‐methyl‐3‐methylene‐1,5‐dithiacyclooctane ( 7 ) (liquid), and 6,8‐dimethyl‐3‐methylene‐1,5‐dithiacyclooctane ( 8 ) (liquid). The monomers were stable materials not requiring any special handling or storage conditions. They were polymerized in bulk using thermal azobisisobutyronitrile (AIBN, VAZO88) and photochemical initiators (Ciba DAROCUR 1173) and in benzene solutions (AIBN, 70 °C). The six‐membered ring monomer 5 was unreactive whereas seven‐membered ring monomer 6 polymerized to high conversion in bulk. In addition, 6 did not polymerize in benzene solution at 70 °C at [ 6 ] = 1.25M. Eight‐membered ring monomers 7 and 8 polymerized in bulk to complete conversion with thermal and photochemical initiators to give lightly crosslinked materials. Near complete conversion to soluble polymers could be obtained in solution polymerizations in benzene. Soluble polymers were also obtained in photochemical initiated bulk polymerizations by lowering initiator concentrations or length of irradiation. The methyl substituent had no effect on which allylic carbon–sulfur bond fragmented in the ring‐opening step. The polymerization volume shrinkages of monomers 7 and 8 were 1.5 and 2.4% respectively and together with monomer 4 (1.5–2.0% shrinkage) are the best available liquid free radical ring‐opening monomers that can be polymerized in bulk at room temperature. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 202–215, 2001  相似文献   

18.
A reversibly cross‐linked epoxy resin with efficient reprocessing and intrinsic self‐healing was prepared from a diamine Diels‐Alder (DA) adduct cross‐linker and a commercial epoxy oligomer. The newly synthesized diamine cross‐linker, comprising a DA adduct of furan and maleimide moieties, can cure epoxy monomer/oligomer with thermal reversibility. The reversible transition between cross‐linked state and linear architecture endows the cured epoxy with rapid recyclability and repeated healability. The reversibly cross‐linked epoxy fundamentally behaves as typical thermosets at ambient conditions yet can be fast reprocessed at elevated temperature like thermoplastics. As a potential reversible adhesive, the epoxy polymer with adhesive strength values about 3 MPa showed full recovery after repeated fracture‐thermal healing processes. The methodology explored in this contribution provides new insights in modification of conventional engineering plastics as functional materials. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2094–2103  相似文献   

19.
A series of difunctional silicon‐containing monomers were prepared with a novel method consisting of the monohydrosilation of an α,ω‐difunctional Si? H‐terminated siloxane with a vinyl‐functional epoxide or oxetane followed by the dehydrodimerization of the resulting Si? H‐functional intermediate. This method used simple, readily available starting materials and could be conducted as a streamlined one‐pot, two‐step synthesis. This novel method was also applied to the synthesis of several epoxy–silicone oligomers. The reactivities of these new monomers and oligomers were examined with Fourier transform real‐time infrared spectroscopy and optical pyrometry. Those monomers containing epoxycyclohexyl groups displayed excellent reactivity in cationic ring‐opening polymerization in the presence of lipophilic onium salt photoinitiators. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3056–3073, 2003  相似文献   

20.
Hybrid materials derived from a thiol‐ene and cationic polymerization were obtained from concomitant polymerization. The hybrid materials were cured by both photopolymerization and thermally induced polymerization. The kinetics of the photopolymerization were measured using time resolved‐IR and optical pyrometry. The nucleophilic character of the polysulfide obtained initially in the thiol‐ene polymerization inhibited the development of the cationic photoinitiated polymerization of epoxy monomers. Besides, the epoxide groups underwent a proton catalyzed addition reaction with the thiols to form new sulfides groups in the reaction mixture. It is proposed that the formed sulfides can terminate the growing polyether chains forming dormant species like trialkylsulfonium salts. These salts promote the thermal polymerization of the epoxy monomer in a post treatment, producing hard and transparent materials. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4829–4843, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号