首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
Dong LF  Lü YH  Liu WY  Yue H  Lu N  Li XC 《光谱学与光谱分析》2010,30(12):3183-3185
利用平行管水电极介质阻挡放电装置,在氩气和空气混合气体中,得到了狭缝微放电等离子体。利用发射光谱法,研究了此放电中分子振动温度、分子转动温度和电子的平均能量随气体压强的变化。通过氮分子第二正带系(C3Πu→B3Πg)的发射谱线计算了氮分子的振动温度;利用氮分子离子(N2+)的第一负带系(B2Σu+→X2Σg+)的发射谱线计算了氮分子的转动温度;测量了氮分子离子391.4 nm和激发态的氮分子337.1 nm两条发射谱线的相对强度之比,研究了电子能量的变化。结果表明,当压强从60 kPa增大到100kPa,分子振动温度及分子转动温度均减小,氮分子离子谱线与激发态的氮分子谱线的强度之比亦减小。  相似文献   

2.
压强对空气/氩气介质阻挡放电中等离子体温度的影响   总被引:1,自引:0,他引:1  
使用水电极介质阻挡放电装置,在氩气和空气的混合气体放电中,利用发射光谱法,研究了电子激发温度和分子振动温度随气体压强的变化关系。通过氩原子763.51 nm(2P6→1S5)和772.42 nm(2P6→1S3)两条谱线强度比法计算电子激发温度;通过氮分子第二正带系(C3ΠuB3Πg)的发射谱线计算氮分子的振动温度;对氮分子离子391.4 nm和激发态的氮分子337.1 nm两条发射谱线的相对强度进行了测量,以进一步研究电子能量的变化。实验表明,随着压强从20 kPa增大到60 kPa, 电子激发温度减小,分子振动温度减小, 氮分子离子谱线与激发态的氮分子谱线强度之比减小。  相似文献   

3.
设计了水电极放电装置,在空气/氩气混合气体中实现了大面积沿面放电。采用发射光谱法,对分子振动温度、电子平均能量和电子激发温度等随气压的变化进行了研究。根据氮分子第二正带系(C3ΠuB3Πg)的发射谱线计算出氮分子的振动温度;使用Ar 763.51 nm(2P6→1S5)和772.42 nm(2P2→1S3)的两条发射谱线的强度比得到电子激发温度;通过氮分子离子391.4 nm和氮分子337.1 nm两条发射谱线的相对强度之比得出了电子的平均能量的变化。实验研究了发射光谱随气压的变化,发现其强度随着气压的增加而增强,且其整个轮廓和谱线强度之比也发生变化。随着气压从0.75×105Pa升高到1×105Pa,分子振动温度、电子激发温度和电子能量均呈下降趋势。  相似文献   

4.
在氩气和空气混合气体介质阻挡放电中,首次发现了团簇六边形斑图。运用发射光谱法,研究了此斑图中单个团簇的三种等离子体参数:分子振动温度、分子转动温度以及电子的平均能量随空气含量的变化。实验通过测量氮分子光谱并采用氮分子第二正带系(C3ΠuB 3Πg)计算了振动温度;同时采集氮分子离子(N+2)的第一负带系(B 2Σ+uX 2Σ+g)计算转动温度。利用氮分子离子391.4 nm和激发态的氮分子337.1 nm两条发射谱线的相对强度之比,作为研究电子平均能量的变化的依据。结果显示,当混合气体中空气含量从16%逐渐增大到24%时,三种等离子体参数均逐渐增大。  相似文献   

5.
空气介质阻挡放电不同放电模式的光谱特性   总被引:1,自引:0,他引:1  
采用光谱方法,研究了空气介质阻挡放电中流光向类辉光转变时电子能量的变化。利用氮分子第二正带系(C3ΠuB3Πg)的发射谱线,测量了氮分子(C3Πu)的振动温度。通过考察氮分子离子391.4 nm谱线强度与氮分子337.1 nm谱线强度之比,研究了电子平均能量的变化。结果表明,流光向类辉光转变时,氮分子(C3Πu)的振动温度激增,氮分子离子391.4 nm相对谱线强度突增,表明类辉光放电模式中电子能量比流光放电模式中电子能量高很多。实验还发现,气隙间距不同,这两种放电模式转变所对应的转变气压不同,但转变气压与气隙间距的乘积值保持不变。  相似文献   

6.
使用针-板式电极装置,在大气压氮气介质阻挡微放电中,通过对氮分子第二正带系(C3Πu→B3Πg)发射光谱的时间分辨谱线进行分析,根据振动带序发射光谱强度计算得出N2(C,ν)振动温度,并研究了不同压强及放电电压对氮分子(C3Πu)的振动温度时间分辨的影响。实验结果表明:氮分子振动温度的范围为2 000~3 500 K,在每半个放电周期内都呈减小趋势,且正负半周期振动温度差较大,负半周期振动温度始终高于正半周期;振动温度随电压升高而升高,随压强的升高而降低。  相似文献   

7.
采用发射光谱法,研究了具有三层介质的介质阻挡放电中不同厚度气隙内微放电通道的等离子体参量的变化规律。与在传统的具有双层介质的介质阻挡放电系统中所产生的微放电通道不同,三层介质系统内微放电通道在光谱特性方面展现了完全不同的性质以及变化规律。实验发现,微放电通道在不同的放电气隙中具有不同的发光强度。利用氮分子第二正带系(C3Πu→B3Πg)的发射谱线以及对氮分子离子391.4 nm谱线强度与氮分子394.1 nm谱线强度之比的考察,实验进一步测量了氮分子(C3Πu)的振动温度以及电子平均能量分别随氩气含量以及在不同电压下的变化规律。结果表明,当外加电压一定时,厚气隙内形成的微放电丝在分子振动温度以及电子平均能量上均低于薄气隙微放电丝。并且它们都随着氩气含量的增加而降低。随着电压的逐步升高,厚气隙内的微放电丝在以上两种参量上均基本保持不变,而薄气隙内微放电丝则出现较为明显的升高。这表明具有三层介质的介质阻挡放电中薄气隙较厚气隙对电压更为敏感且在相同电压浮动内电场变化范围更大。  相似文献   

8.
利用水电极介质阻挡放电装置,在氩气和空气的混合气体中,首次观察到了由点和线组成的八边形结构。采用发射光谱法,研究了八边形结构中的点和线的等离子体温度随压强的变化关系。利用氮分子第二正带系(C3ΠuB3Πg)的发射谱线,计算了点和线的分子振动温度;通过氮分子离子391.4 nm和氮分子394.1 nm两条发射谱线的相对强度比,研究了点和线的电子平均能量大小变化;利用氩原子763.26 nm(2P6→1S5)和772.13 nm(2P2→1S3)两条谱线强度比法,得到了点和线的电子激发温度。实验发现:在同一压强条件下,线比点的分子振动温度、电子平均能量以及电子激发温度均高;随着气体压强从40 kPa增大到60 kPa,点和线的分子振动温度、电子平均能量以及电子激发温度均减小。  相似文献   

9.
利用介质阻挡放电装置.在低气压空气中得到了均匀放电,并采用光谱法,研究了放电等离子体温度的空间均匀性.实验采集了氮分子光谱,采用氮分子第二正带系C3Ⅱu→B3Ⅱg计算振动温度;采用氮分子离子第一负带系计算转动温度(气体温度).实验发现,振动温度随电压增加而减小,而转动温度随电压增加而增大.等离子体振动温度和转动温度在空...  相似文献   

10.
在空气与氩气组成的混合气体的介质阻挡放电实验中,采用发射光谱法,首次研究了放电气隙分别为:1, 4和2 mm三层放电气隙中的放电丝的光谱特性。这与以往的单层放电气隙或者是双层放电气隙中的放电丝在光谱特性方面有很大的不同。实验通过采集氮分子第二正带系(C3ΠuB3Πg)谱线,计算出不同放电气隙中的放电丝的分子振动温度。利用氮分子离子391.4 nm谱线强度与氮分子394.1 nm谱线的强度之比得到不同放电气隙中放电丝的电子平均能量。增加氩气在混合气体中的比例,得到分子振动温度及电子平均能量随着氩气含量增加的变化趋势。实验结果表明:在同一氩气含量下,分子振动温度从小到大的顺序为:2 mm放电气隙,1 mm放电气隙,4 mm放电气隙。电子平均能量从小到大的顺序为:4 mm放电气隙,2 mm放电气隙,1 mm放电气隙。三层放电气隙中放电丝的分子振动温度及电子平均能量均随着氩气含量的增加而减小。  相似文献   

11.
采用介质阻挡放电等离子体喷枪装置,在大气压下流动气体(氩气和痕量氮气)中产生了稳定的喷射等离子体.通过拍摄喷枪发光照片,研究了喷射等离子体长度随气体流量的变化关系.利用高分辨率光谱仪采集等离子体羽处的发射光谱,通过对发射光谱中N+2的第一负系(B 2Σ+u→X 2Σ+g,390~391.6 nm)谱线拟合得到了射流等离...  相似文献   

12.
在氩气/空气的混合气体介质阻挡放电中,首次在高温条件下观察到亮点和暗点共存的放电,比较了中心亮点及四周暗点放电的谱线频移,并测量了它们的振动温度。实验采用氩原子ArⅠ(2P2→1S5)的发射谱线测量谱线频移,采用氮分子第二正带系(C3Πu→B3Πg)的发射谱线测量振动温度。结果表明:中心亮点放电中的ArⅠ(2P2→1S5)谱线的频移大于四周的暗点放电谱线的频移,表明前者电子密度较高;四周的暗点的放电振动温度高于中心亮点放电的振动温度。  相似文献   

13.
不同结构六边形斑图演化过程光谱特性   总被引:6,自引:6,他引:0       下载免费PDF全文
采用发射光谱法,研究了水电极介质阻挡放电中具有相同对称性的3种不同结构的六边形斑图演化过程的光谱特性。实验结果表明,随着外加电压的增加,放电首先形成六边形点阵斑图,然后是空心六边形斑图,最后是蜂窝六边形斑图。利用氩原子696.5 nm(2P_2→1S_5)谱线的展宽、氩原子763.2 nm(2P_6→1S_5)与772.1 nm(2P_2→1S_3)两条谱线强度比法和氮分子第二正带系(C~3Π_u→B~3Π_g)的发射谱线,研究上述3种斑图的电子密度、电子激发温度及分子振动温度。结果发现,随着外加电压的升高,六边形点阵斑图、空心六边形斑图和蜂窝六边形斑图的电子密度逐渐减小,而电子激发温度和分子振动温度逐渐增加。等离子体状态的改变直接影响着斑图的自组织。  相似文献   

14.
为了更加深入地了解氩气/空气等离子体射流内的电子输运过程及化学反应过程,通过针-环式介质阻挡等离子体发生器在放电频率10 kHz,一个大气压条件下对氩气/空气混合气进行电离并产生了稳定的等离子体射流。通过发射光谱法对不同峰值电压下氩气/空气等离子体射流的活性粒子种类、电子激发温度及振动温度进行了诊断。结果表明,射流中的主要活性粒子为N2的第二正带系、Ar Ⅰ原子以及少量的氧原子,其中N2的第二正带系的相对光谱强度最强、最清晰,在本试验的发射光谱中没有发现N+2的第一负带系谱线,这说明在氩气/空气等离子体射流中几乎没有电子能量高于18.76 eV的自由电子。利用Ar Ⅰ原子激发能差较大的5条谱线做最小二乘线性拟合对等离子体射流的电子激发温度进行了计算,得到大气压氩气/空气等离子体射流的电子激发温度在7 000~11 000 K之间。随峰值电压的增大,电子激发温度表现出先增大后减小的变化趋势,这说明电子激发温度并不总是随峰值电压的增长单调变化的。通过N2的第二正带系对等离子体振动温度进行了诊断,发现大气压氩气/空气等离子体射流振动温度在3 000~4 500 K之间,其随峰值电压的增大而减小,这意味着虽然峰值电压的提高可有效提高自由电子的动能,但当电子动能较大时自由电子与氮分子之间的相互作用时间将会缩短,进而二者之间的碰撞能量转移截面将会减小,从而导致等离子体振动温度的降低。  相似文献   

15.
Rotational analyses of the B(2)Sigma(+)(u) --> X(2)Sigma(+)(g) system of the (14)N(+)(2) molecule have been extended to include the vibrational levels up to v' = 4. Spectral data from 20 bands obtained from high-resolution Fourier transform spectrometry of a hollow-cathode and a Pointolite lamp were included in the analysis. A global deperturbation yielded molecular parameters of the highly perturbed B(2)Sigma state and interaction parameters A(2)Pi(u) approximately B(2)Sigma(u) with a standard deviation of 0.011 cm(-1). Rotational term values of the B(2)Sigma(+) state were also determined. New perturbations in the B(2)Sigma(+) (v = 0) level have been observed at N approximately 85 and N approximately 96. Copyright 2000 Academic Press.  相似文献   

16.
脉冲流光放电产生的大于等于11.2 eV的高能电子能将处于基态的氮分子激发到N2(C3Πu)态,测试脉冲流光放电时的N2(C3ΠuB3Πg)发射光谱相对强度可以得出脉冲流光放电产生的高能电子的密度。实验在室温常压下研究了空气中线-板式脉冲流光放电脱硫反应器内高能电子密度分布情况,并研究了脉冲电压、反应器的线线间距对反应器内高能电子密度分布的影响。实验结果表明,反应器内的高能电子主要集中在放电线附近高电场区内,随着离放电线的距离增大,高能电子密度减小;脉冲电压对高能电子密度有很大影响,随着电压的升高,高能电子密度基本呈线性增大;线板间距固定,线线间距为线板间距的0.6~1倍时,反应器内高能电子密度分布较为均匀。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号