首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
A single ^40Ca^+ ion is loaded in a miniature Paul trap and the probability of directly loading a single ion is above 50%. The signal-to-noise ratio and the storage time for a single ion have been improved by minimizing the ion micromotion and locking a 397nm cooling laser to a Fabry-Perot interferometer and optogalvanic signal. From the fluorescence spectrum, the ion temperature is estimated to be about 5mK.  相似文献   

2.
An endcap ion trap is described for trapping and laser cooling of a single strontium-88 ion. The 422 nm cooling laser is offset locked to the Doppler-free 5s 2S1/2(F′′=2)–6p 2P1/2(F=3) transition in 85Rb using saturation spectroscopy. The peak fluorescence signal from a single ion is around 6.0×104 counts/s with the cooling laser at saturation intensity. Optical pumping of the ion in zero magnetic field is eliminated by the use of two 1092 nm repumper laser beams incident on the ion to create a time-varying polarisation. The ion’s micromotion can be reduced in all three dimensions, and the motional sidebands on the weak 5s 2S1/2–4d 2D5/2 quadrupole transition in 88Sr+ have been observed. These results show the ion to be confined to less than a wavelength in three dimensions.  相似文献   

3.
A new method of compensating for the excess micromotion along two directions in three-dimensional Coulomb crystals is reported in this paper; this method is based on shape control and optical imaging of a Coulomb crystal in a sectioned linear ion trap. The characteristic parameters, such as the ion numbers, temperatures, and geometric factors of different ion crystals are extracted from the images and secular motion excitation spectra. The method of controlling the shape of the ion crystals can be used in cold ion experiments, such as sympathetically cooling, structural phase transitions,and selective-control of ions, etc.  相似文献   

4.
谢艺  万威  周飞  陈亮  李朝红  冯芒 《中国物理 B》2012,21(6):63201-063201
Quantum computing requires ultracold ions in a ground vibrational state,which is achieved by sideband cooling.We report our recent efforts towards the Lamb-Dicke regime which is a prerequisite of sideband cooling.We first analyse the possible imperfection in our linear ion trap setup and then demonstrate how to suppress the imperfection by compensating the excess micromotion of the ions.The ions,after the micromotion compensation,are estimated to be very close to the Doppler-cooling limit.  相似文献   

5.
《中国物理 B》2021,30(5):53702-053702
Micromotion induced by the radio-frequency field contributes greatly to the systematic frequency shifts of optical frequency standards. Although different strategies for mitigating this effect have been proposed, trapping ions optically has the potential to provide a generic solution to the elimination of micromotion. This could be achieved by trapping a single ion in the dipole trap composed of a highpower laser field. Here, we present the setup of the dipole trap composed of a 532 nm laser at a power of 10 W aiming to optically trap a single ~(40)Ca~+ and we observe an AC-Stark shift of the fluorescence spectrum line of ~22 MHz caused by the 532 nm dipole beam. The beam waist of the dipole laser is several microns, which would provide a dipole potential strong enough for all-optical trapping of a single ~(40)Ca~+ ion.  相似文献   

6.
In this paper,we introduce a method of quantitatively evaluating and controlling the space charge effect of a lasercooled three-dimensional(3 D) ion system in a linear Paul trap.The relationship among cooling efficiency,ion quantity,and trapping strength is analyzed quantitatively,and the dynamic space distribution and temporal evolution of the 3 D ion system on a secular motion period time scale in the cooling process are obtained.The ion number influences the eigen-micromotion feature of the ion system.When trapping parameter q is ~ 0.3,relatively ideal cooling efficiency and equilibrium temperature can be obtained.The decrease of axial electrostatic potential is helpful in reducing the micromotion heating effect and the degradation in the total energy.Within a single secular motion period under different cooling conditions,ions transform from the cloud state(each ion disperses throughout the envelope of the ion system) to the liquid state(each ion is concentrated at a specific location in the ion system) and then to the crystal state(each ion is subjected to a fixed motion track).These results are conducive to long-term storage and precise control,motion effect suppression,high-efficiency cooling,and increasing the precision of spectroscopy for a 3 D ion system.  相似文献   

7.
We characterise the performance of a surface-electrode ion “chip” trap fabricated using established semiconductor integrated circuit and micro-electro-mechanical-system (MEMS) microfabrication processes, which are in principle scalable to much larger ion trap arrays, as proposed for implementing ion trap quantum information processing. We measure rf ion micromotion parallel and perpendicular to the plane of the trap electrodes, and find that on-package capacitors reduce this to ?10?nm in amplitude. We also measure ion trapping lifetime, charging effects due to laser light incident on the trap electrodes, and the heating rate for a single trapped ion. The performance of this trap is found to be comparable with others of the same size scale.  相似文献   

8.
We present a new setup to sympathetically cool 115In+ ions with 172Yb+ for optical clock spectroscopy. A first prototype ion trap made of glass-reinforced thermoset laminates was built, based on a design that minimizes axial micromotion and offers full control of the ion dynamics in all three dimensions. We detail the trap manufacturing process and the characterization of micromotion in this trap. A calibration of the photon-correlation spectroscopy technique demonstrates a resolution of 1.1 nm in motional amplitude of our measurements. With this method, we demonstrate a sensitivity to systematic clock shifts due to excess micromotion of $|(\Updelta\nu/\nu)_{\rm mm}|=7.7\times10^{-20}$ along the direction of the spectroscopy laser beam. Owing to our on-board filter electronics on the ion trap chips, no rf phase shifts could be resolved at this level. We measured rf fields over a range of 400 μm along the ion trap axis and demonstrated a region of 70 μm where an optical frequency standard with a fractional inaccuracy of ≤1 × 10?18 due to micromotion can be operated.  相似文献   

9.
The trapped ions confined in a surface-electrode trap(SET) could be free from rf heating if they stay at the rf potential null of the potential well.We report our effort to compensate three-dimensionally for the micromotion of a single ~(40)Ca~+ ion near the rf potential null,which largely suppresses the ion's heating and thus helps to achieve the cooling of the ion down to 3.4 mK,which is very close to the Doppler limit.This is the prerequosite of the sideband cooling in our SET.  相似文献   

10.
“White-light” cooling of an ion beam confined in a storage ring has been demonstrated at Test Storage Ring in Heidelberg. Measurements aimed at comparing “white-light” with single-mode laser cooling show that “white-light” cooling gives lower temperatures at higher ion densities both in a coasting and in a bunched beam. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
We report a surface electrode trap with a relatively large trap depth (0.6–1.0?eV). The trap electrodes are formed by gold plating an alumina substrate. Calcium ions are trapped approximately 400?μm above the trap surface. We demonstrate micromotion compensation based on parametric resonance for surface electrode traps. Unlike the conventional method based on radio-frequency (rf)–photon correlation in which the wave vector of the laser beam must have a component parallel to the micromotion to be detected, the proposed method is independent of the laser propagation direction. This enables the micromotion component normal to the electrode surface to be detected without increasing the scattered light.  相似文献   

12.
+ ions. The Ca+ ions are trapped in a miniature rf Paul trap and irradiated by light from a frequency-doubled diode laser at 397 nm and by light from a diode laser at 866 nm. We are able to cool a single ion and observe its fluorescence continuously with the laser diode locked to the external frequency-doubling cavity. Quantum jumps in the fluorescence light of a single ion and of a small cloud of five ions have been induced by driving the “clock” transition at 729 nm. We were able to resolve the influence of the micromotion on the excitation spectrum of the small ion cloud. Received: 10 July 1997/Revised version: 17 November 1997  相似文献   

13.
We propose a scheme for tapered laser cooling of coasting ion beams in storage rings. Tapered cooling has recently been shown to be crucial for attaining crystalline ion beams. The scheme proposed here, based on a relative displacement of a co- and a counterpropagating Gaussian laser beam, gives a radial variation in the equilibrium velocities to which particles are cooled. The variation is approximately linear in a relatively large range transverse to the laser beams. Expressions for the spatially dependent equilibrium velocities and the range of the tapered cooling forces are derived. We discuss the dependence on laser beam parameters as well as the limitations of this cooling scheme.  相似文献   

14.
Laser cooling of Li-like C~(3+)and O~(4+)relativistic heavy ion beams is planned at the experimental Cooler Storage Ring(CSRe). Recently, a preparatory experiment to test important prerequisites for laser cooling of relativistic~(12)C~(3+)ion beams using a pulsed laser system has been performed at the CSRe. Unfortunately, the interaction between the ions and the pulsed laser cannot be detected. In order to study the laser cooling process and find the optimized parameters for future laser cooling experiments, a multi-particle tracking method has been developed to simulate the detailed longitudinal dynamics of laser-cooled ion beams at the CSRe. Simulations of laser cooling of the~(12)C~(3+)ion beams by scanning the frequency of the RF-buncher or continuous wave(CW) laser wavelength have been performed. The simulation results indicate that ion beams with a large momentum spread could be laser-cooled by the combination of only one CW laser and the RF-buncher, and show the requirements of a successful laser cooling experiment. The optimized parameters for scanning the RF-buncher frequency or laser frequency have been obtained.Furthermore, the heating effects have been estimated for laser cooling at the CSRe. The Schottky noise spectra of longitudinally modulated and laser-cooled ion beams have been simulated to fully explain and anticipate the experimental results. The combination of Schottky spectra from the highly sensitive resonant Schottky pick-up and the simulation methods developed in this paper will be helpful to investigate the longitudinal dynamics of RF-bunched and ultra-cold ion beams in the upcoming laser cooling experiments at the CSRe.  相似文献   

15.
We have performed systematic measurements of the dynamics of laser-cooled 40Ca+ ions confined in a Penning trap and driven by a rotating dipole field (‘rotating wall’). The trap used is a copy of the one used in the SPECTRAP experiment located at the HITRAP facility at GSI, Germany. The size and shape of the ion cloud has been monitored using a CCD camera to image the fluorescence light resulting from excitation by the cooling laser. We have varied the experimental conditions such as amplitude and frequency of the rotating wall drive as well as the trapping parameters. The rotating wall can be used for a radial compression of the ion cloud thus increasing the ion density in the trap. We have also observed plasma mode excitations in agreement with theoretical expectations. This work will allow us to define the optimum parameters for high compression of the ions as needed for precision spectroscopy of forbidden transitions.  相似文献   

16.
We describe how a single hydrogen-like ion (C5+) is prepared, cooled with the method of resistive cooling and non-destructively detected with the image-current technique in a cryogenic Penning trap at T = 4 K. The storage time for C5+-ions in the cryogenically pumped vacuum chamber is longer than six months. The experimental techniques of preparing, cooling and detecting highly-charged ions in a Penning trap are relevant for precision experiments such as g-factor measurements, mass spectroscopy and laser spectroscopy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
A simple model is developed to study the laser cooling of solids.The condition of laser cooling of a solid is developed.By using some parameters of the Yb 3+ ion,which is most widely used in laser cooling,we then calculate the cooling power and the cooling efficiency.In order to make a more precise analysis, the effect of fluorescent reabsorption,which is unavoidable in the cooling process,is discussed using the random walk model.Taking Tm 3+ ion as an example,we derive the average number of absorption events and determine the change in quantum efficiency due to reabsorption.Finally,we obtain the red-shift of the fluorescent wavelength and the requirement of sample dimension.  相似文献   

18.
An experimental demonstration of a novel all-optical technique for loading ion traps, which has particular application to microtrap architectures, is presented. The technique is based on photoionisation of an atomic beam created by pulsed laser ablation of a calcium target, and provides improved temporal control compared to traditional trap loading methods. Ion loading rates as high as 125 ions per second have so far been observed. Also described are observations of trap loading where Rydberg state atoms are photoionised by the ion Doppler cooling laser. PACS 32.80.Fb; 32.80.Dz; 39.10.+j; 52.38.Mf  相似文献   

19.
At the TSR cooler ring at Heidelberg, laser studies were carried out using singly charged lithium and beryllium ions. Laser spectroscopy of relativistic lithium ions (v=0.04c) yielded signals with a narrow linewidth, suitable for an experimental test of special relativity. A dramatic reduction of the beam temperature, as defined by the longitudinal velocity spread, was achieved via laser cooling in both cases. At the ion energies available at ESR it will become possible to prepare and store bare ions up to U92+. Electron cooling was succesfully demonstrated for hydrogen-like Bi82+ ions, where a laser experiment is scheduled to study the ground-state hyperfine splitting.  相似文献   

20.
High quality measurements in respect to accuracy, resolving power and sensitivity using negative osmium ions confined in ion traps will contribute to answer questions in modern fundamental physics. A proposed system to carry out these measurements would require a laser desorption ion source, and an ion-trap system. Following the recent laser spectroscopy investigations at the Max-Planck Institute for Nuclear Physics in Heidelberg, the goals of the proposed system should focuss on the laser cooling of negative osmium ions since such a system could be used to cool antiprotons to very low temperatures via collisions (sympathetic cooling) for efficient antihydrogen formation in its ground state. Furthermore, together with rhenium ions, the confinement of osmium ions in a Penning trap is important to determine the mass difference 187Re-187Os, and therefore the Q-value in the decay of 187Re (T 1/2?=?4×1010 years) with unprecedented accuracy. This Q-value is an important constraint for the determination of the mass of the electron antineutrino as aimed by the international MARE collaboration. In this paper several mechanisms are considered for the preparation of the negative ions in order to apply laser cooling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号