首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A well-defined plasma assisted combustion system with novel in situ discharge in a counterflow diffusion flame was developed to study the direct coupling kinetic effect of non-equilibrium plasma on flame ignition and extinction. A uniform discharge was generated between the burner nozzles by placing porous metal electrodes at the nozzle exits. The ignition and extinction characteristics of CH4/O2/He diffusion flames were investigated by measuring excited OH1 and OH PLIF, at constant strain rates and O2 mole fraction on the oxidizer side while changing the fuel mole fraction. It was found that ignition and extinction occurred with an abrupt change of OH1 emission intensity at lower O2 mole fraction, indicating the existence of the conventional ignition-extinction S-curve. However, at a higher O2 mole fraction, it was found that the in situ discharge could significantly modify the characteristics of ignition and extinction and create a new monotonic and fully stretched ignition S-curve. The transition from the conventional S-curves to a new stretched ignition curve indicated clearly that the active species generated by the plasma could change the chemical kinetic pathways of fuel oxidation at low temperature, thus resulting in the transition of flame stabilization mechanism from extinction-controlled to ignition-controlled regimes. The temperature and OH radical distributions were measured experimentally by the Rayleigh scattering technique and PLIF technique, respectively, and were compared with modeling. The results showed that the local maximum temperature in the reaction zone, where the ignition occurred, could be as low as 900 K. The chemical kinetic model for the plasma–flame interaction has been developed based on the assumption of constant electric field strength in the bulk plasma region. The reaction pathways analysis further revealed that atomic oxygen generated by the discharge was critical to controlling the radical production and promoting the chain branching effect in the reaction zone for low temperature ignition enhancement.  相似文献   

2.
Ignition temperatures of non-premixed flames of octane and decane isomers were determined in the counterflow configuration at atmospheric pressure, a free-stream fuel/N2 mixture temperature of 401 K, a local strain rate of 130 s?1, and fuel mole fractions ranging from 1% to 6%. The experiments were modeled using detailed chemical kinetic mechanisms for all isomers that were combined with established H2, CO, and n-alkane models, and close agreements were found for all flames considered. The results confirmed that increasing the degree of branching lowers the ignition propensity. On the other hand, increasing the straight chain length by two carbons was found to have no measurable effect on flame ignition for symmetric branched fuel structures. Detailed sensitivity analyses showed that flame ignition is sensitive primarily to the H2/CO and C1–C3 hydrocarbon kinetics for low degrees of branching, and to fuel-related reactions for the more branched molecules.  相似文献   

3.
Data from a recent instantaneous, simultaneous, high-resolution imaging experiment of Rayleigh temperature and laser induced fluorescence (LIF) of OH and CH2O at the base of a turbulent lifted methane flame issuing into a hot vitiated coflow are analysed and contrasted to reference flames to further investigate the stabilization mechanisms involved. The use of the product of the quantified OH and semi-quantified CH2O images as a marker for heat release rate is validated for transient autoigniting laminar flames. This is combined with temperature gradient information to investigate the flame structure. Super-equilibrium OH, the nature of the profiles of heat release rate with respect to OH mole fraction, and comparatively high peak heat release rates at low temperature gradients is found in the kernel structures at the flame base, and found to be indicative of autoignition stabilization.  相似文献   

4.
Ignition temperatures of non-premixed cyclohexane, methylcyclohexane, ethylcyclohexane, n-propylcyclohexane, and n-butylcyclohexane flames were measured in the counterflow configuration at atmospheric pressure, a free-stream fuel/N2 mixture temperature of 373 K, a local strain rate of 120 s?1, and fuel mole fractions ranging from 1% to 10%. Using the recently developed JetSurf 2.0 kinetic model, satisfactory predictions were found for cyclohexane, methyl-, ethyl-, and n-propyl-cyclohexane flames, but the n-butylcyclohexane data were overpredicted by 20 K. The results showed that cyclohexane flames exhibit the highest ignition propensity among all mono-alkylated cyclohexanes and n-hexane due to its higher reactivity and larger diffusivity. The size of mono-alkyl group chain was determined to have no measurable effect on ignition, which is a result of competition between fuel reactivity and diffusivity. Detailed sensitivity analyses showed that flame ignition is sensitive primarily to fuel diffusion and also to H2/CO and C1–C3 hydrocarbon kinetics.  相似文献   

5.
Propagation of a H2-added strained laminar CH4/air flame in a rich-to-lean stratified mixture is numerically studied. The back-support effect, which is known to enhance the consumption speed of a flame propagating into a leaner mixture compared to that into a homogeneous mixture, is evaluated. A new method is devised to characterize unsteady reactant-to-reactant counterflow flames under transiently decreasing equivalence ratio, in order to elucidate the influence of flow strain on the back-support effect. In contrast to the conventional reactant-to-product configurations, the current configuration is more relevant to unsteady stratified flames back-supported by their own combustion products. Moreover, since H2 distribution downstream of the flame is known to play a crucial role in back-supported CH4/air flames, the influence of H2 addition in the upstream mixture is examined. The results suggest that a larger strain rate leads to a larger equivalence ratio gradient at the reaction zone through increased flow divergence, which amplifies the back-support. Meanwhile, since H2 addition in the upstream mixture does not affect the downstream H2 content, the relative increase in the consumption speed, i.e. the back-support, is suppressed with larger H2 addition. Especially, when the upstream H2 content decreases with the equivalence ratio, the H2 preferentially diffuses toward the unburned gas, which mitigates H2 accumulation in the preheat zone and further weakens the back-support.  相似文献   

6.
7.
8.
The inhibition/extinction of various flames—premixed stoichiometric C3H8/air, nonpremixed counterflow CH4/O2/N2, and nonpremixed coflow n-heptane/air cup-burner flames doped with a number of phosphorus-containing compounds (PCCs)—has been investigated experimentally. More than 20 PCCs (organic phosphates, phosphonates, phosphates) and their fluorinated derivatives were studied. All PCCs exhibited similar dependencies in burning velocities, extinction strain rates, and extinction volume fractions of CO2 upon PCC loading in the range of mole fractions of 0–7000 ppm within an experimental deviation of ± 5%. This confirms that the inhibition effectiveness of the PCCs is influenced by the phosphorus content in the PCC molecule rather than by the structure of the molecule. The burning velocity of a stoichiometric C3H8/air mixture and the extinction strain rate of a nonpremixed counterflow CH4/O2/N2 flame doped with trimethylphosphate were calculated. Satisfactory agreement between experimental and modeling results confirms the conclusion that the reactions of phosphorus oxyacids with radicals are responsible for flame inhibition.  相似文献   

9.
The interaction of a premixed methane-air flame with a two-dimensional counter-rotating vortex pair is studied under stoichiometric and rich conditions using a detailed C1C2 chemical mechanism. The flame structure and transient response are examined, both at curved cusps and on the vortex-pair centreline. Differences between the two flames are observed in the unsteady behaviour of species mole fractions and production rates. In contrast with earlier one-dimensional opposed-jet flame data, the present results show that the rich flame exhibits a faster response to unsteady strain-rate disturbances than does the stoichiometric flame. Analysis of the results suggest this may be due to the increased dependence of the flame on H, and the decreased role of OH, under rich conditions. Results are also presented from an experimental V-flame vortex-pair interaction study. Measured peak CH and OH data are also found to exhibit a faster flame response under rich conditions.  相似文献   

10.
The ignition of a laminar non-premixed H2/air mixing layer with an embedded vortex was computationally studied with detailed chemistry and transport. The initial vortex velocity and pressure fields were specified based on the stream function of an incompressible nonviscous vortex. The fuel side is pure hydrogen at 300 K, and the oxidizer side is air at 2000 K. The vortex evolution process was found to consist of two ignition events. The first ignition occurs in a diffusion mode with chain branching reactions dominating. The second ignition takes place in the premixed mode, with more chemical reactions involved, and is significantly affected by the heat and species generated in the first ignition event. The coupling between the most reactive mixture fraction and scalar dissipation rate was verified to be crucial to the ignition delay. The effects of the vortex strength, characteristic size, and its center location were individually investigated. For all vortex cases, the ignition delay was shorter than that of the 1D case. Furthermore, the ignition delay has a nonmonotonic dependence on all the vortex parameters.  相似文献   

11.
Deep insights into the combustion kinetics of ammonia (NH3) can facilitate its application as a promising carbon-free fuel. Due to the low reactivity of NH3, experimental data of NH3 combustion can only be obtained within a limited range. In this work, nitrous oxide (N2O) and hydrogen (H2) were used as additives to investigate NH3 auto-ignition in a rapid compression machine (RCM). Ignition delay times for NH3, NH3/N2O blends, and NH3/H2 blends were measured at 30 bar, temperatures from 950 to 1437 K. The addition of N2O and H2 ranged from 0 to 50% and 0 to 25% of NH3 mole fraction, respectively. Time-resolved species profiles were recorded during the auto-ignition process using a fast sampling system combined with a gas chromatograph (GC). An NH3 combustion model was developed, in which the rate constants of key reactions were constrained by current experimental data. The addition of N2O affected the ignition of NH3 primarily through the decomposition of N2O (N2O (+M) = N2 + O (+M), R1) and direct reaction between N2O and NH2 (N2H2 + NO = NH2 + N2O, R2). The rate constant of R2 was constrained effectively by experimental data of NH3/N2O mixtures. Two-stage ignition behaviors were observed for NH3/H2 mixtures, and the corresponding first-stage ignition delay times were reported for the first time. Experimental species profiles suggested the first-stage ignition resulted from the consumption of H2. The oxidation of H2 provided extra HO2 radicals, which promoted the production of OH radicals and initiated first-stage ignition. Reactions between HO2 radicals and NH3/NH2 dominated the first-ignition delay times of NH3/H2 mixtures. Moreover, the first-stage ignition led to the fast production of NO2, which acted as a key intermediate and affected the following total ignition. Consequently, the reaction NH2 + NO2 = H2NO + NO (R3) was constrained by total ignition delay times.  相似文献   

12.
The auto-ignition properties of ammonia (NH3)/ethanol (C2H5OH) blends close to engine operating conditions were investigated for the first time. Specifically, the ignition delay times (IDT) of ammonia/ethanol blends were measured in a rapid compression machine (RCM) at elevated pressures of 20 and 40 bar, five C2H5OH mole fractions from 0% to 100%, three equivalence ratios (ϕ) of 0.5, 1.0 and 2.0, and intermediate temperatures between 820 and 1120 K. The measurements reveal that ethanol can drastically promote the reactivity of ammonia, e.g., the auto-ignition temperature with merely 1% C2H5OH in fuel decreases accordingly around 110 K at 40 bar as compared to that of neat ammonia. Moreover, the promotion efficiency of ethanol is higher than hydrogen and methane with a factor of 5 and 10 under the same condition. Different dependences of IDT on the equivalence ratio were observed with different ethanol fractions in the blends, i.e., the IDTs of the 5%, 10% and 100% C2H5OH in fuel decrease with an increase of ϕ, but an opposite trend was observed in the mixture with 1% C2H5OH. A new chemical kinetic mechanism for NH3/C2H5OH mixtures was developed and it is highlighted that the addition of cross-reactions between the two fuels is necessary to obtain reasonable simulations. Basically, the newly developed mechanism can reproduce the measurements of IDT very well, whereas it overestimates the reactivity of the stoichiometric and fuel-rich mixture with 1% C2H5OH in fuel. The sensitivity, reaction pathway, as well as rate of production analysis indicated that the ethanol addition to ammonia fuel blends provides key interaction pathways and enriches the O/H radical pool which further promotes the auto-ignition process.  相似文献   

13.
14.

Ignition and propagation of a reaction front in a counterflow system of an iso-octane/air stream mixing with an exhaust gas stream is computationally investigated to understand the fundamental characteristics of homogeneous charge compression ignition (HCCI) auto-ignition. Various mixing rates are imposed on the system and the effects of dissipation rates on auto-ignition are studied. Ignition delay and front propagation speed across the mixing layer are determined as a function of a local mixture fraction variable. The results show that mixture inhomogeneity and dissipation rate have a significant influence on ignition. Diffusive transport is found to either hamper or advance ignition depending on the initial reactivity of the mixture. Based on the relative importance of diffusion on ignition front propagation, two distinct ignition regimes are identified: the spontaneous ignition regime and the diffusion-controlled regime. The transition between these two regimes is identified using a criterion based on the ratio of the timescales of auto-ignition and diffusion. The results show that ignition in the spontaneous regime is more likely under typical HCCI operating conditions with iso-octane due to its high reactivity. The present analysis provides a means to develop an improved modelling strategy for large-scale engine simulations.  相似文献   

15.
Laminar flame speeds were accurately measured for CO/H2/air and CO/H2/O2/helium mixtures at different equivalence ratios and mixing ratios by the constant-pressure spherical flame technique for pressures up to 40 atmospheres. A kinetic mechanism based on recently published reaction rate constants is presented to model these measured laminar flame speeds as well as a limited set of other experimental data. The reaction rate constant of CO + HO2 → CO2 + OH was determined to be k = 1.15 × 105T2.278 exp(−17.55 kcal/RT) cm3 mol−1 s−1 at 300-2500 K by ab initio calculations. The kinetic model accurately predicts our measured flame speeds and the non-premixed counterflow ignition temperatures determined in our previous study, as well as homogeneous system data from literature, such as concentration profiles from flow reactor and ignition delay time from shock tube experiments.  相似文献   

16.
The initiation of H2/O2/H2O mixture combustion when asymmetric vibrations in H2O molecules are excited by a resonant IR laser radiation is considered. It is shown that the vibrational excitation of the molecules gives rise to new efficient channels for the formation of chemically active O and H atoms and OH radicals. As a result, the chain mechanism of combustion in the mixtures is enhanced and, as a consequence, the induction time is cut and the ignition temperature is lowered. Even at a minor radiant energy flux delivered to the gas (Ein≈2.5 J/cm2), the ignition temperature of the stoichiometric H2/O2 mixture containing only 5% of H2O may become as low as 300 K.  相似文献   

17.
Compared to quiescent premixed reactants, forced ignition of flowing/turbulent premixed reactants is expected to be more difficult because of increased dissipation of the deposited energy. However, the counterintuitive turbulence-facilitated ignition (TFI) has been observed in recent experiments for mixtures with large Lewis number, Le. The mechanisms behind TFI are still not well understood and this study aims to interpret a part of the TFI mechanisms through considering electrodes and imposed flow in the simulations of forced ignition in hydrogen/air mixtures. The imposed flow emulates the local turbulent effects around the electrodes which might blow the ignition kernel away from the electrodes. Since TFI occurs only for mixtures with large Le (e.g., lean hydrocarbon/air or rich H2/air mixture), a fuel-rich (ϕ=5.1) H2/air mixture with Le≈2.3 is investigated to reduce computational cost and consider more factors that may lead to TFI. Similar to TFI observed in experiments, the flow-facilitated ignition is observed for H2/air with ϕ=5.1 and Le≈2.3 when the electrodes have a small gap distance. The detailed effects of including electrodes on forced ignition of quiescent and flowing mixtures are explored. It is found that the existence of electrodes not only induces heat loss but also affects the shape and global curvature/stretch of the ignition kernel. The heat loss to the electrodes is demonstrated to play an important role for the ignition of mixtures with large Le. Compared to quiescent mixtures, considering an imposed flow normal to the electrodes can blow the flame kernel away from the cold electrodes. Such movement of the ignition kernel can greatly reduce both the heat loss to the electrodes and flame curvature/stretch, and thereby promote the ignition in mixtures with large Le. These results help to understand the underlying mechanisms for the TFI observed in experiments.  相似文献   

18.
In recent years, direct numerical simulations have been used increasingly to evaluate the validity and performance of combustion reaction models. This study presents a new, quantitative method to determine the ideal model performance attainable by a given parameterization of the state variables. Data from direct numerical simulation (DNS) of unsteady CO/H2–air jet flames is analysed to determine how well various parameterizations represent the data, and how well specific models based on those parameterizations perform. Results show that the equilibrium model performs poorly relative to an ideal model parameterized by the mixture fraction. The steady laminar flamelet model performs quite well relative to an ideal model parameterized by mixture fraction and dissipation rate in some cases. However, at low dissipation rates or at dissipation rates exceeding the steady extinction limit, the steady flamelet model performs poorly. Interestingly, even in many cases where the steady flamelet model fails (particularly at low dissipation rate), the DNS data suggests that the state may be parameterized well by the mixture fraction and dissipation rate. A progress variable based on the CO2 mass fraction is proposed, together with a new model based on the CO2 progress variable. This model performs nearly ideally, and demonstrates the ability to capture extinction with remarkable accuracy for the CO/H2 flames considered.  相似文献   

19.
A three mixture fraction flamelet model is proposed for multi-stream laminar pulverized coal combustion. The technique of coordinate transformation is utilized to map the flamelet solutions from a unit pyramid space into a unit cubic space to improve the stability of the simulation. The validity of the three mixture fraction flamelet model was assessed on different configurations, including a laminar counterflow pulverized coal/methane flame and a laminar piloted pulverized coal jet flame. The flamelet predictions were compared to the reference results of the detailed chemistry solutions. For the counterflow flame, it was found that the flame temperature and major species mass fractions are correctly predicted by the three mixture fraction flamelet model. However, discrepancies are observed for combustion-mode-sensitive species such as CO and H2 in the premixed combustion region. The thermo-chemical quantities in the char surface reaction zone cannot be correctly predicted if the mixing between the char off-gas stream and other streams is neglected. For the piloted jet flame, it was shown that the stable thermo-chemical variables can be correctly predicted at the upper and middle stream locations. However, at the downstream location, discrepancies can be observed in certain regions. Overall, the validity of the three mixture fraction flamelet model for multi-stream pulverized coal combustion is confirmed and its performance in turbulent pulverized coal combustion will be tested in future work.  相似文献   

20.
This paper presents experimental evidence that using the KrF excimer laser for quantitative laser-induced fluorescence (LIF) studies of the OH A-X (3,0) system is highly problematic if the effects of both photobleaching and photochemistry are not included for laser spectral irradiances greater than 20 MW/cm2 cm-1. Pump-probe and time-resolved measurements of the OH LIF signal in an atmospheric pressure, premixed CH4-air flame at low- and high-laser-spectral-irradiance conditions show that a significant amount of OH is produced from photofragments resulting from the simultaneous 2-photon predissociation of H2O molecules in the C-X system. A 5+2-level rate-equation model that includes the effects of both photobleaching and photochemical OH production is shown to satisfactorily predict the data using a single adjustable parameter given by the effective, spectrally integrated 2-photon cross-section of H2O near 248 nm. The time-integrated OH LIF signal was found to depend on both the laser spectral irradiance and the local concentration of H2O. Additionally, use of the KrF excimer laser for 2-line rotational thermometry can produce temperature errors as great as +550 K at high laser-pulse energies. Received: 21 August 2000 / Revised version: 30 October 2000 / Published online: 21 February 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号