首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, a nonaqueous method is used to fabricate thin TiO2 layers. In contrast to the common aqueous sol–gel approach, our method yields layers of anatase nanocrystallites already at low temperature. Raman spectroscopy, electron microscopy and charge extraction by linearly increasing voltage are employed to study the effect of sintering temperature on the structural and electronic properties of the nanocrystalline TiO2 layer. Raising the sintering temperature from 120 to 600?°C is found to alter the chemical composition, the layer’s porosity and its surface but not the crystal phase. The room temperature mobility increases from 2?×?10?6 to 3?×?10?5?cm2/Vs when the sinter temperature is increased from 400 to 600?°C, which is explained by a better interparticle connectivity. Solar cells comprising such nanoporous TiO2 layers and a soluble derivative of cyclohexylamino-poly(p-phenylene vinylene) were fabricated and studied with regard to their structural and photovoltaic properties. We found only weak polymer infiltration into the oxide layer for sintering temperatures up to 550?°C, while the polymer penetrated deeply into titania layers that were sintered at 600?°C. Best photovoltaic performance was reached with a nanoporous TiO2 film sintered at 550?°C, which yielded a power conversion efficiency of 0.5?%. Noticeably, samples with the TiO2 layer dried at 120?°C displayed short-circuit currents and open circuit voltages only about 15–20?% lower than for the most efficient devices, meaning that our nonaqueous route yields titania layers with reasonable transport properties even at low sintering temperatures.  相似文献   

2.
Three diamine monomers with different derivatives of imidazole heterocyclic ring and meta-linked aryl ethers were synthesized and used in polycodensation reaction with various commercial dianhydrides for preparation of a series of novel poly(ether-imide) (PEI)s. The polycodensation reactions were carried out by using conventional method and in a green medium of ionic liquid (IL) without using NMP-pyridine-acetic anhydride. The PEIs were obtained in good yields (80% 96%) with moderate viscosity (0.48 0.66 dL/g) in a shorter reaction time (10 h) in IL as compared with the conventional method (36 h). All of the polymers were amorphous in nature, showed excellent solubility in amide-type polar aprotic solvents with ability to form tough and flexible films, and excellent thermal stability with Tgs in the range of 212 340 ℃ and 10% weight loss temperature (T10) up to 570℃ in N 2 and 528 ℃ in air.  相似文献   

3.
The anionic polymerization of acrylonitrile in DMF initiated by lithium 1,2-bis(diethylamino)-2-oxoethanolate in the range ?60 to 0°C has been studied. The initiator efficiency at low temperatures (?60 to ?40°C) is 2–6%; it remains nearly invariable with conversion owing to the associated state of the initiator. The low concentration of growing active centers is constant throughout the process; as a result, polymers with M > 3 × 105 are produced. The polymers are characterized by a narrow molecular-mass distribution, M w/M n = 1.3–1.6, and contain insignificant amounts of low-molecular-mass fractions. It has been shown that controlled polymerization processes can be carried outat moderately low temperatures (?30 to 0°C), and experimental conditions for freezing of polymerization and its recommencement have been ascertained. Optimum conditions for the synthesis of a high-molecular-mass polyacrylonitrile with M > 3 × 105 have been established, and the method for preparing polymers with M = (6.50–8.5) × 105 on an enlarged scale using high concentrations of the monomer has been developed.  相似文献   

4.
Abstract

A number of new condensation polymers with acetal units in the main chain and having linear and ladder-form structure and high thermal stability were synthesized by solution polycondensation of dihydroxyaromatic compounds with malonaldehydetetramethyl acetal as a reactive protected 1,3-dicarbonyl compound. Optimal conditions for polycondensation were obtained via study of the model compounds. In order to obtain high molecular weight polymers, general investigations on the influence of reaction conditions, such as monomer concentration and reaction temperature were carried out. All polymers were obtained in high yields and moderate inherent viscosity ranging from 0.25 to 0.41?dL/g. The proposed chemical structures of condensation polymers were confirmed by 1H-NMR, 13C-NMR, FTIR spectroscopies, TGA, and DSC. Thermal analysis indicated that these polymers are stable up to 360?°C, and a 10% weight loss (T10) were recorded on the TG curves in the temperature range of 381–411?°C in nitrogen atmosphere, indicating their good thermal stability.  相似文献   

5.
Hyperbranched poly(aryl-ether-urea)s with phenyl, N,N-dimethylamino ethyl and polyethylene oxide end-groups linked through urethane group – HBPEU-1, HBPEU-2 and HBPEU-3 respectively – were synthesized from an AB2-type blocked isocyanate monomer and characterized by FT-IR, 1H-NMR, SEC-MALLS, TGA and DSC techniques. The molecular weight of the polymers were found to be ranged from 4.9 × 103 ? 1.96 × 104 g/mol. The TGA results showed that the polymers decompose between 175°C – 220°C. In the DSC curves, HBPEU-1 and HBPEU-3 showed Tg at 160°C and 53°C respectively, whereas HBPEU-2 did not showed clear Tg. All the three polymers were converted into polymer electrolytes by doping with LiI/I2. The doped polymers showed remarkably high ionic conductivity, up to 222 – 277 times compared to the un-doped polymers and the highest conductivity was observed with doped HBPEU-2. The TiO2 based dye-sensitized solar cells (DSSCs) were fabricated using the doped polymer electrolytes and their performance was tested; HBPEU-2 showed good performance by yielding energy conversion efficiency (η) of 4.5%.  相似文献   

6.
Soluble aromatic and carboxyl- and hydroxyl-containing polyimides, mixed polyimides, and polyquinazolones of various chemical structures, as well as a series of new dicyanoazobenzene chromophores, are synthesized. From 20 to 80 mol % of chromophore groups are incorporated into side chains of the polymers. The thermal, photosensitive, and nonlinear optical properties (second-harmonic generation) of the chromophore-containing polymers are investigated. The polymers with covalently attached groups of the dye DR-13 or azo-derivatives of 4-phthalonitrile demonstrate the highest nonlinearity. The T g values of the polyimides vary from 165 to 215°C; their temperatures corresponding to 5% weight loss lie in the range 290–350°C; and the measured coefficients of second-harmonic generation, d 33, for a number of polarized films based on chromophore-containing polymers attain several tens of picometers per volt. The incorporation of chromophore groups into the side chains of the polymers causes an increase in the photosensitivity of polyimides by an order of magnitude relative to that of the parent polymers (S 0.1 = (3?4) × 105 cm2/J in the range of dye absorption).  相似文献   

7.
New aromatic polyamide and polyimides were prepared from di(aminophenyl)acetylenediurea. In addition, model compounds were synthesized and their IR spectra were in agreement with those of the corresponding polymers. The polymers were amorphous and readily soluble in polar aprotic solvents (DMF, NMP, DMSO) and certain acids (H2SO4, CCl3COOH). The hydrophilicity of polyamide was estimated by measuring the isothermal water absorption. The polyamide softened at 260°C but no softening was observed for polyimides. The glass transition temperatures of polymers were determined by the TMA method and they were in the range of 235–310°C. The polymers were stable up to 359–404°C in N2 or air and afforded char yields of 53–65% at 800°C in N2. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
Thermodynamic characteristics of inelastic deformation (work W def, heat Q def, and stored energy ΔU def) are studied for aromatic main-chain copolyesters (CPEs) based on p-hydroxybenzoic acid and poly(ethylene terephthalate) (Rodrun and SKB-1), p-hydroxybenzoic acid, naphthalene carboxylic acid, and terephthalic acid with hydroquinone and dioxyphenyl (HX-6000 and HX-7000). The samples are deformed under an active uniaxial compression by ?def ≈ 50% at room temperature. All CPEs are semicrystalline polymers; their degree of crystallinity is (depending on their prehistory) 5–30%, and the melting temperature of crystallites is 275–350°C. Seemingly, the glassy component of CPEs includes two interpenetrating glassy structures, S-1 and S-2, with different glass-transition temperatures Tg: 90–120 and 250–270°C, respectively. During loading, all coexisting crystalline and glassy structures of CPEs store residual strain ?res. The kinetics of the temperature-stimulated strain recovery of ?res is measured. In component S-1, strain recovery occurs in the temperature interval ranging from T room to 120°C. In the crystalline phase, this process occurs in the melting-temperature interval. In component S-2, strain recovery ?res commences at T > 120°C. In CPEs, all structural components are involved in deformation at different ?def. At small strains only component S-1 is deformed; then, at ?def ≈ 10–15%, component S-2 is involved in the deformation. Crystallites join this process at ?def > 20–25% (? y = 8–10%). In CPE, two modes of deformation arise: reversible elastic (retarded elastic) and true plastic irreversible deformation. True plastic permanent strain always exists in the deformed CPEs. Deformation of all CPEs proceeds easier than that of all “common” glassy polymers (polystyrene, poly(methyl methacrylate), etc.). In CPEs, the yield stress and compressive modulus appear to be ≈40–50% lower than in “common” glassy polymers. It seems that the mesomorphic structure of LC CPEs enhances the elementary plastic processes in them. Thermodynamic characteristics of the S-1 phase plasticity are compared with the behavior of “common” glassy polymers. At the early stages of loading, nearly all mechanical work of deformation W def spent is stored in phase S-1 in the form of δU def, as in all “common” glassy polymers. This fact implies that the inelastic deformation of LC glasses commences with the nucleation of small-scale and localized intermolecular transformations of the nonconformational type. In both mesomorphic and “common” glassy polymers, the stage of nucleation of such transformations controls the overall kinetics of the inelastic and plastic deformation. Nucleation does not depend on chain rigidity, a circumstance that conflicts with the model of forced elasticity. It seems that crystallites in CPE are deformed according to crystallographic mechanisms. Currently, neither the structure nor the deformation mechanism of component S-2 is known.  相似文献   

9.
Sebacyl bisketene was generated in solution at ?78°C. Copolymerization in solution at 0°C with the secondary diamines, piperazine and N,N′dimethyl-1,6-hexamethylenediamine, yielded the polyamides poly(1,4-piperazylsebacyl) and poly[(methylimino)hexamethylene(methylimino)sebacyl], respectively. The polyamides were obtained in yields of 50–90%. The former had a glass transition temperature (Tg) at 30°C and a melting temperature at 165°C, whereas the latter had only a Tg at ?15°C. The polymers were insoluble in the usual polyamide solvents. Copolymerization with the diol bisphenol A yielded poly(oxy-1,4-phenyleneisopropylidene-1,4-phenyleneoxysebacyl). The polyester was obtained in yields up to 99%. Gel permeation chromatography (GPC) determinations showed molecular weights up to 50,000 when acetone was the reaction solvent but only 12,000 when tetrahydrofuran (THF) was the reaction solvent; the Tg for the polyester varied with the molecular weight with a maximum at 15°C. Tensile properties were obtained for the polyesters with molecular weights greater than 35,000.  相似文献   

10.
Efficient syntheses of novel 10-aryl-5a-(arylamino)-9-hydroxy-5a,6,7,8-tetrahydroindeno[1,2-b]chromen-11(10H)-one derivatives has been reported by [4+2] cycloaddition reactions of electron-deficient 2-(arylmethylene)-1H-indene-1,3(2H)-dione heterodienes with electron-rich enaminones in [bmim]BF4 at 80?°C and in acetic acid at 80?°C. Dimedone/cyclohexane-1,3-dione enaminones have been used as dienophiles in Inverse Electron Demand hetero-Diels-Alder reactions. The products were obtained in high yields by a simple work up.  相似文献   

11.
Two series of poly(imide-ester)s (PIEs) and poly(ether-imide-ester)s (PEIEs), having benzoxazole or benzothiazole pendent groups, were conveniently prepared by the diphenylchlorophosphate-activated direct polyesterification of two bis(imide-carboxylic acid)s (1), such as 2-[3,5-bis(N-trimellitimidoyl)phenyl]benzoxazole (1 O ) and 2-[3,5-bis(Ntrimellitimidoyl) phenyl]benzothiazole (1 S ) and two bis(imide-ether-carboxylic acid)s (2), such as 2-[3,5-bis(4-trimellitimidophenoxy)-phenyl]benzoxazole (2 O ), and 2-[3,5-bis(4-trimellitimidophenoxy)-phenyl]benzothiazole (2 S ) with various aromatic dihydroxy compounds in the presence of pyridine and lithium chloride. The structures, solubilities and thermal properties of obtained polymers were investigated in detail. All of the resulting polymers were characterized by FTIR and 1H-NMR spectroscopy and elemental analysis. All of the resulting polymers exhibited excellent solubility in common organic solvents, such as pyridine, tetrahydrofuran and m-cresol, as well as in polar organic solvents, such as N-methyl-2-pyrrolidone, N,N-dimethylacetamide, N,N-dimethylformamide and dimethyl sulfoxide. The modified polymers were obtained in quantitative yields with inherent viscosities between 0.47 and 0.67 dl·g?1. Experimental results indicated that all the polymers had glass transition temperature between 198 °C and 262 °C, the decomposition temperature at 10% weight loss between 398 °C and 531 °C under nitrogen.  相似文献   

12.
Polymers of 1,4-bis[2-(N-vinyl)pyrrolyl]benzene with free N-vinyl groups in side chains are synthesized in the presence of AIBN (2–5 wt %, 70°C) with a yield of up to 34% and a molecular mass of up to 11.5 × 103. In the presence of cationic catalysts (Me3SiCl, the LiBF4-dimethoxyethane system, and BF3 · OEt2), 1,4-bis[2-(N-vinyl)pyrrolyl]benzene gives macromolecules with alternating 1,2-pyrrolene and ethylidene units in the backbone with yields of 80, 44, and 33%, respectively. The polymers demonstrate paramagnetic and luminescent properties.  相似文献   

13.
1,1,3,3-Tetramethyl-1,3-disilacyclobutane (I) was polymerized under the following conditions with H2PtCl6·6H2O as catalyst: (a) addition of I dropwise to a large excess of catalyst at room temperature, producing [(CH3)3SiCH2(CH3)2Si]2O in 90% yield; (b) polymerization at room temperature in the presence of 10% water with 23 ppm Pt, yielding 9% conversion to low molecular weight polymer after 4 weeks; (c) polymerization in an open vessel (25°C., 7 ppm Pt, M?n = 1.2 × 105), a closed vessel (100°C., 28 ppm Pt, M?n = 1.7 × 105), in a closed tube after twice freezing and evacuating (25°C., 23 ppm Pt, M?n = 2.9 × 105); (d) polymerization in an oxygen atmosphere (25°C., 17 ppm Pt, M?n = 2.7 × 105). The molecular weight distributions of the polymers with M?n = 1.2 × 105 and 1.7 × 105 was studied by gel-permeation chromatography. Ratios of M?w/M?n are 3.1 and 2.7, respectively. In both cases a long tail of high molecular weight polymer is evident. Interpretation of the molecular weight distributions is qualitatively discussed on the basis of a postulated seven-step mechanism. Water is shown to be a source of chain termination. Evidence is presented for the existance of ?SiOSi? and ?SiOH in the silmethylene polymers. Negligible cyclization occurs. Orders of thermal stability measured by DTA and TGA for polydimethylsilmethylene (A), polydimethylsiloxane (B), and polysiobutylene (C) are: in He, A > B > C; in air, in air, B > C ? A. A fractionally precipitated polydimethylsilmethylene had a weight loss of less than 5% by 600°C. by TGA analysis at 10°C./min. in He.  相似文献   

14.
End‐group modified hyperbranched polyetherimides were prepared by a one‐pot, two‐step reaction sequence. General synthetic techniques were developed to prepare both monofunctional terminating segments and the corresponding modified polyetherimide hyperbranched polymers. Monofunctional groups were used to terminate an AB2‐type polycondensation reaction, generating capped hyperbranched polymers (HBPs). The composition and constitution of the end groups controlled the solubility and thermal properties of the HBPs. For the same polymer backbone, different end groups were able to shift the glass‐transition temperature nearly 100 °C. End‐group modification greatly influenced the film‐forming ability of the HBPs. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 936–946, 2002  相似文献   

15.
This article concerns the hydrosilylation polyaddition of 1,4‐bis(dimethylsilyl)benzene ( 1 ) with 4,4′‐diethynylbiphenyl, 2,7‐diethynylfluorene ( 2b ), and 2,6‐diethynylnaphthalene with RhI(PPh3)3 catalyst. Trans‐rich polymers with weight‐average molecular weights (Mw's) ranging from 19,000 to 25,000 were obtained by polyaddition in o‐Cl2C6H4 at 150–180 °C, whereas cis‐rich polymers with Mw's from 4300 to 34,000 were obtained in toluene at 0 °C–r.t. These polymers emitted blue light in 4–81% quantum yields. The cis polymers isomerized into trans polymers upon UV irradiation, whereas the trans polymers did not. The device having a layer of polymer trans‐ 3b obtained from 1 and 2b demonstrated electroluminescence without any dopant. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2774–2783, 2004  相似文献   

16.
《中国化学快报》2020,31(5):1197-1200
Partially biobased polysilylethers (PSEs) are synthesized via dehydrocoupling polymerization catalyzed by an anionic iridium complex. Different types (AB type or AA and BB type) of monomers are suitable. Levulinic acid (LA) and succinic acid (SA) have been ranked within the top 10 chemicals derived from biomass. BB type monomers (diols) derived from LA and SA have been applied to the synthesis of PSEs. The polymerization reactions employ an air-stable anionic iridium complex bearing a functional bipyridonate ligand as catalyst. Moderate to high yields of polymers with number-average molecular weights (Mn) up to 4.38 × 104 were obtained. A possible catalytic cycle via an Ir-H species is presented. Based on the results of kinetic experiments, apparent activation energy of polymerization in the temperature range of 0–10 °C is about 38.6 kJ/mol. The PSEs synthesized from AA and BB type monomers possess good thermal stability (T5 = 418 °C to 437 °C) and low glass-transition temperature (Tg = −49.6 °C).  相似文献   

17.
Bacillus mycoides S122C was identified as carboxymethyl cellulase (CMcellulase)-producing bacteria from the Azorean Bacillus collection (Lab collection), which was isolated from local soil samples. The bacteria was identified by 16S rRNA sequence and designated as B. mycoides S122C. NCBI blast analysis showed that the B. mycoides S122C 16S rRNA sequence has high identity compared to other B. mycoides strains. CMcellulase was purified from the culture filtrates using anion-exchange chromatography. After mono-Q purification, the protein folds and recovery were 13.7 and 0.76?%, respectively. SDS-PAGE analysis showed that the molecular weight of the purified CMcellulase protein was estimated to be about 62?kDa and that it was composed of a single subunit. MALDI-MS/MS analysis yielded each four peptides of the purified protein; it has identity to other cellulases. The purified CMcellulase showed high activity with CMcellulose followed by ??-glucan as a substrate. Optimum temperature and pH for the purified CMcellulase activity were found to be at 50?°C and pH?7.0, respectively. The purified CMcellulase was stable with about 60?% activity in broad pH ranges from 5 to 10 and temperature of 40 to 60?°C. However, purified CMcellulase was stable at about 70?% at 70?°C and also stable overall at 78?% for surfactants. CMcellulase activity was inhibited by ions such as HgCl2, followed by CuSo4, FeCl2, and MnCl2, while CoCl2 activated CMcellulase activity. The purified CMcellulase activity was strongly inhibited by EDTA.  相似文献   

18.
A new class of polyethers has been prepared by the Mitsunobu coupling of poly(4-vinyl phenol), P4VP, with low molecular weight poly(ethylene glycol)methyl ether. These comb-like polymers, having ca. 20–30% residual phenols, were characterized by IR, DSC, and TGA. Results of thermal analysis on the polymers suggest thermal stability to at least 300°C and a glass transition temperature in the range ?30 to ?40°C. Complexes with LiPF6 gave conductivities of ca. 1 × 10?5 S/cm at room temperature. The polymers were blended with plasticized poly(vinylidene fluoride) (PVDF) to prepare porous films and subsequently infiltrated with lithium salts and ethylene and ethyl methyl carbonate. Ionic conductivities of these hybrid films were measured from ?20°C to 40°C. Conductivities as high as 2.4 × 10?3 S/cm are observed at room temperature. The electrochemical stability of hybrid materials was studied by cyclic voltammetry.  相似文献   

19.
Dependences of the molecular weight distribution and stereochemical regulation of the polypropylenes produced with VCl4–AlEt2Cl catalyst on the polymerization temperature were examined. The molecular weight distributions of the polymers obtained at temperatures below ?40°C were unimodal and narrow (M w/M n ≤ 2). The molecular weight distributions obtained at higher temperatures (above ?21°C) were bimodal with one narrow distribution and one wide one (M w/M n > 2), and the polymer fraction of the wide distribution increased with the polymerization temperature. The fractional amount of ? (CH2)2? groups in the polymers, which corresponds to tail-to-tail linkage of two propylene units, increased to a maximum at ?21°C followed by a gradual decrease with the polymerization temperature. The production of isotactic polymers was confirmed at temperatures above ?21°C. From these data, it is concluded that only the homogeneous form of the catalyst system is responsible for the polymerization at temperatures below about ?21°C while the heterogeneous form appears and catalyzes the polymerization together with the homogeneous one at temperatures above ?21°C.  相似文献   

20.
New aromatic diyne monomers of 1,4‐diethynyl‐2,5‐(dihexyloxy)benzene ( 1 ), 1,6‐diethynyl‐2‐(hexyloxy)naphthalene ( 2 ), and 9,9‐bis(4‐ethynylphenyl)fluorene ( 3 ) are synthesized. Their homopolymerizations and copolymerizations with 1‐octyne ( 4 ) or phenylacetylene ( 5 ) are effected by TaBr5–Ph4Sn and CpCo(CO)2, giving soluble hyperbranched polyarylenes with high molecular weights (Mw up to ~ 2.9 × 105) in high yields (up to 99%). The structures and properties of the polymers are characterized and evaluated by IR, NMR, UV, PL, and TGA analysis. The polymers show excellent thermal stability (Td > 400 °C) and carbonize when pyrolyzed at 900 °C. Upon photoexcitation, the polymers emit deep blue light in the vicinity of ~400 nm with fluorescence quantum yields up to 92%. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4249–4263, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号