首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three new salts of tetrahedral rhenium chalcocyanide cluster anions [Re4Q4(CN)12]4? (Q = S, Se, Te) and 1,10-phenanthroline-1-ium cations, (phenH)4[Re4S4(CN)12]·6H2O (1), (phenH)4[Re4Se4(CN)12]·6H2O (2), and (phenH)4[Re4Te4(CN)12]·10H2O (3), have been synthesized by reactions of K4[Re4Q4(CN)12nH2O with 1,10-phenanthroline in the presence of Nd3+ in an acidic aqueous medium (pH 4). 1 and 2 exhibit similar 2-D layered supramolecular architectures based on hydrogen bonds between water molecules, CN-groups of cluster anions, and phenH+ cations. The latter are involved in ππ and C–H?π stacking interactions, connecting the adjacent layers with each other. Complex 3 demonstrates a 3-D framework based on hydrogen bonds between water molecules and CN-groups, ππ and C–H?π interactions. Notably short O···Te contacts of 3.40 and 3.50 Å are found in the structure of 3. The thermal properties of 1–3 have been investigated by TG-DTG.  相似文献   

2.
The rare gas-noble metal systems XeMX (M = Au, Ag, Cu; X = F, Cl, Br) were investigated at the CCSD(T) and DFT levels. Geometric structures, natural bond orbital population, HOMO-LUMO gap, the rare gas-noble metal interaction and the chemical deformation density were analyzed. Experimental structure parameters of the XeAuF and XeMX (M = Ag, Cu; X = F, Cl) were reproduced at Xα level. At the same time, the XeAuCl and XeMBr (M = Au, Ag, Cu) compounds were predicted. The electronegativity of halogen atom X correlates with the M–X bond length, HOMO-LUMO gap, electronic structures and Xe–M bond energy.  相似文献   

3.
From the systems Cu(II)–cyclam–[M(CN)4]2? (cyclam = 1,4,8,11-tetraazacyclotetradecane; M = Ni, Pd, Pt), three cyanidocomplexes Cu(cyclam)M(CN)4 [M = Ni (1), Pd (2), Pt (3)] were isolated and characterized by chemical analysis, IR and UV–VIS spectroscopy. The three compounds are isostructural, and their crystal structures are formed by quasi-linear chains exhibiting [–Cu(cyclam)–μ–NC–M(CN)2–μ–CN–]n composition. The Cu(II) atoms reside on centres of symmetry and are coordinated in the form of an elongated octahedron with mean equatorial Cu–N bonds of 2.015(12), 2.017(13) and 2.011(11) Å in (1), (2) and (3), respectively, and weakly N-bonded bridging cyanido ligands in the axial positions [2.5321(9) Å in (1), 2.518(2) Å in (2) and 2.549(3) Å in (3)]. Hydrogen bonds of the N–H···Ncyanido···H–N type link neighbouring chains, and a topologically square network of paramagnetic Cu(II) atoms is formed. The magnetic susceptibilities of all three complexes follow the Curie-Weiss law with a weak antiferromagnetic exchange coupling below 5 K.  相似文献   

4.
The hitherto unknown complexes, [M2(CO)6(μ-CO)(μ-L)], [M = Cr; 1, Mo; 2, W; 3] and [M2(CO)6(μ-CO)(μ-L′)], [M = Cr; 4, Mo; 5, W; 6] have been synthesized by the photochemical reactions of photogenerated intermediate, M(CO)5THF (M = Cr, Mo, W) with thio Schiff base ligands, N,N′-bis(2-aminothiophenol)-1,4-bis(2-carboxaldehydephenoxy)butane (H 2 L) and N,N′-bis(2-aminothiophenol)-1,7-bis(2-formylphenyl)-1,4,7-trioxaheptane (H 2 L′). The complexes have been characterized by elemental analysis, LC-mass spectrometry, magnetic studies, FT-IR and 1H NMR spectroscopy. The spectroscopic studies show that H 2 L and H 2 L′ ligands are converted to benzothiazole derivatives, L and L′ after UV irradiation and coordinated to the central metal as bridging ligands via the central azomethine nitrogen and sulphur atoms in 1–6.  相似文献   

5.
The standard Gibbs energy of formation of M2TeO6 and M6TeO12 (where M = Sc, Y), was determined from its vapor pressure measurements by employing thermogravimetry-based transpiration technique. This technique was validated by measuring the vapor pressure of well-studied substances such as TeO2(s) and CdCl2(s). The temperature dependence of the vapor pressure of TeO2(g) over the mixtures M6TeO12 + M2O3 (where M = Sc, Y), generated by the incongruent vaporization reaction, M6TeO12(s) → 3M2O3(s) + TeO2(g) + ½O2(g) were measured in the temperature range 1,413–1,473 K and 1,623–1,743 K for Sc6TeO12(s) and Y6TeO12(s), respectively. Similarly, the vapor pressure of TeO2(g) over the mixtures M2TeO6(s) + M6TeO12(s) generated by the vaporization reaction, 3M2TeO6(s) → M6TeO12(s) + 2TeO2(g) + O2(g) was measured in the temperature range (1,223–1,293 K) and (1,333–1,423 K) for Sc2TeO6(s) and Y2TeO6(s), respectively. From the vapor pressure measurements, the standard Gibbs energy of formation of M6TeO12 and M2TeO6 were derived.  相似文献   

6.
The standard Gibbs energies of formation of Nd2TeO6 and M6TeO12 (where M = Nd, Sm) were determined from vapour pressure measurements. The vapour pressure of TeO2(g) was measured by employing thermogravimetry-based transpiration technique. The temperature dependence of the vapour pressure of TeO2(g) over the mixtures Nd2TeO6+Nd6TeO12, generated by the incongruent vapourisation reaction, 3Nd2TeO6(s) → Nd6TeO12(s)+2TeO2(g)+O2(g), was measured in the temperature range 1,408–1,495 K. Similarly, the vapour pressure of TeO2(g) over the mixtures M6TeO12+M2O3 (where M = Nd, Sm), generated by the incongruent vapourisation reaction, M6TeO12(s) → 3M2O3(s)+TeO2(g)+½O2(g), was measured in the temperature range 1,703–1,773 and 1,633–1,753 K for Nd6TeO12(s) and Sm6TeO12(s), respectively. Enthalpy increments of M2TeO6(s) (where M = Nd, Sm) were determined by inverse drop calorimetric method in the temperature range 573–1,273 K. The thermodynamic functions, viz., heat capacity, entropy and free energy functions, were derived from the measured values of enthalpy increments. A mean value of ?2,426.2 ± 0.6 and ?2,417.9 ± 1.1 kJ mol?1 was obtained for $ \Updelta_{\text{f} } H_{298}^{\text{o}} $ (Nd2TeO6, s) and $ \Updelta_{\text{f}} H_{298}^{\text{o}} $ (Sm2TeO6, s), respectively, by combining the value of $ \Updelta_{\text{f}} G^{\text{o}} $ (Nd2TeO6, s) and $ \Updelta_{\text{f}} G^{\text{o}} $ (Sm2TeO6, s) derived from vapour pressure data and the free energy functions derived from the drop calorimetric data.  相似文献   

7.
The reactions of the group 15 trihalides, MX(3) (M = As, Sb, Bi; X = Cl, Br), with the phosphine selenide SeP(p-FC(6)H(4))(3) result in the formation of co-crystals of formula MX(3)·SeP(p-FC(6)H(4))(3). No reaction was observed with MI(3) (M = As, Sb, Bi). The structures of MX(3)·SeP(p-FC(6)H(4))(3) (M = As, X = Br 2; M = Sb, X = Cl 3; M = Bi, X = Cl 5; M = Bi, X = Br 6) have been established, and are isomorphous, crystallising in the cubic I23 space group. All the structures feature a primary MX(3) unit, which has three weak secondary MSe interactions to SeP(p-FC(6)H(4))(3) molecules. However, each of these SeP(p-FC(6)H(4))(3) molecules bridges three MX(3) molecules, resulting in the generation of an M(4)Se(4) (M = As, Sb, Bi) distorted cuboid linked by the pnictogen-chalcogen interactions. Four opposing corners of the cuboid are occupied by the M atom (M = As, Sb, Bi) of an MX(3) pyramid, and the other four by the selenium atom of the phosphine selenide.  相似文献   

8.
The ground-state geometrical and electronic properties of neutral and charged M n C2 (M = Fe, Co, Ni, Cu; n = 1–5) clusters are systematically investigated by density-functional calculations. The growth evolution trends of neutral and charged Fe n C2, Co n C2, Ni n C2 and Cu n C2 (n = 1–5) clusters are all from lower to higher dimensionality, while it is special for Cu n C 2 ± (n = 1–5) clusters which favor planer growth model. The space directional distributions of Co and Ni indicate stronger magnetic anisotropy than that in Cu atoms. Compare with experimental data (photoelectron spectroscopy), our results are in good agreement. The interaction strengths between metal and carbon atoms in TM–C (TM = Fe, Co, Ni) clusters are comparable and are obviously larger than that in Cu–C clusters, and this interaction strengths also decrease through the sequence: cation > neutral > anion, which may be crucial in exploring the differences in the growth mechanisms of metal–carbon nano-materials.  相似文献   

9.
Gas-phase CS2 activation by M+ (M = Ta, W, Re) was studied by the B3LYP density functional method.The geometries for reactants, transition states, and products were completely optimized. CS2 activation mediated by M+ (M = Ta, W, Re) were found to be a spin-forbidden process as a result of the crossing among the multistate energetic profiles. On the basis of the Hammond postulate, this was a typical two-state reactivity reaction. Among the different potential energy surfaces, the crossing points had been explored. The spin–orbit coupling (SOC) was also calculated between the electronic states of different multiplicities at the crossing point to estimate the intersystem crossing probability. For CP1, CP2, and CP4, the computed SOC constants were 80.28, 128.65, and 526.77 cm?1, which obtained by using one-electron spin–orbit Hamiltonian in Gaussian 09.  相似文献   

10.
A new hybrid material, (H2dien)2(Hamimi)2[Co3Mo12O24(OH)6(HPO4)6(PO4)2]2 · nH2O (1) (n = 5.26), was hydrothermally synthesized via a simultaneous in situ cyclization of acetic acid and diethylenetriamine to 1-(2-aminoethyl)-2-methyl-2-imidazoline. The sandwich-shaped [Co(Mo6P4)2] clusters in 1 are linked by tetrahedrally coordinated cobalt into two-dimensional layers. It is interesting that no 2-imidazoline group was observed when the starting Co(II) salt was replaced by Ni(II) salt under the same hydrothermal conditions, but it led to the isolation of (Hdien)2[NiMo12O24(OH)6(H2PO4)6(HPO4)2] · 2dien · 8H2O (2), in which the [Ni(Mo6P4)2] units are discrete. A probe reaction of the oxidation of acetaldehyde with H2O2 showed that both compounds have high catalytic activity in the reaction. Compound 1 crystallizes in the space group C2/c with a = 26.028(4), b = 12.3391(17), c = 25.555(4) Å, β = 98.876(12)°, V = 8109(2) Å3 and Z = 4. Compound 2 is in the space group P21/n with a = 13.206(3), b = 22.170(5), c = 13.627(3) Å, β = 103.437(5)°, V = 3880.7(15) Å3 and Z = 2.  相似文献   

11.
The structural and electronic properties of two series of Group VB transition metal oxide clusters, M4O n ? and M4O n (M = Nb, Ta; n = 8–11), are investigated using density functional theory calculations. Generalized Koopmans’ theorem is applied to predict the vertical detachment energies and simulate the photoelectron spectra. Large highest occupied molecular orbital–lowest unoccupied molecular orbital gaps are observed for these two stoichiometric M4O10 clusters and estimated to be 3.98 and 4.38 eV for M = Nb and Ta, respectively. The M4O 10 ?/0 (M = Nb, Ta) clusters are polyhedral cage structures with high symmetry (T d for the neutral and D 2d for the anion) in which each metal atom joints three bridging and one terminal O atoms. For the Nb oxide species, Nb4O 8 ?/0 and Nb4O 9 ?/0 can be viewed as removing two and one terminal O atoms from Nb4O 10 ?/0 , respectively. The Ta species follow the same rule to the Nb species, except that the anionic Ta4O8 ? is formed by removing one terminal and one bridging O atoms from Ta4O10 ?. The Ta4O9 containing a localized Ta3+ site can readily react with O2 to form the Ta4O11 which can also be viewed as replacing a terminal oxygen atom in Ta4O10 by a peroxo O2 unit, whereas the added oxygen atom is found to be a bridging one in the O-rich clusters Nb4O 11 ?/0 and the anionic Ta4O11 ?. Molecular orbital analyses are performed to analyze the chemical bonding in the tetra-nuclear metal oxide clusters and to elucidate their structural and electronic evolution.  相似文献   

12.
Four different skeletal structural arrangements with very different connectivities are known for 6-vertex/68-electron of M4E2 core (M = transition metal; E = main-group atom or ligand). DFT calculations on a large number of title model compounds allow to rationalize the preferences between these structural shapes with respect to the nature of the metal and main-group elements constituting the cluster cage. In particular, the electronegativity of M and the “size” (first-row vs. second-row element) of E play an important role in the stability preference of a particular isomer. For several compounds, although only one type of structure is known, other low-energy isomeric forms are also likely to exist. Moreover, two structural types, so far unreported, are predicted to be stable enough for being synthesized.  相似文献   

13.
The possible existence of the gas phase cis- and trans-maleate, i.e. completely deprotonated maleic acid (O2C–CΗ=CΗ–CO2)2–, is investigated by density functional (B3LYP) and ab-initio quantum chemical methods (MP2, CCSD(T)) using large basis sets. The calculations reveal that only the trans-isomer is Coulomb stable with respect to electron loss. The results are compared to other previously investigated dicarboxylate dianions of the general form ?O2C–R–CO2 ? with R = C2, C2X2, C2X4, and C6X4 (X = H, F). Fluorine substitution on the carbon framework helps to stabilize these doubly charged systems, and we predict that all of the aromatic fluorine substituted dicarboxylate dianions are Coulomb stable in the gas phase. Only the highest levels of theory reveal the slight stabilization of both the succinate dianion and the ortho-isomer of the phthalic acid dianion in unprecedented agreement with experiments.  相似文献   

14.
Eu(III) containing M-layered silicates (M = Li, Na, K, Rb, Cs) were prepared using the layered silicates, such as ilerite, magadiite, and kenyaite, as a host matrix and the luminescence properties were investigated. The results from the luminescence measurements indicated that the luminescence properties in the EuM-layered silicate system depended strongly on the types of host matrices and alkali cations. Among the EuM-layered silicates, EuM-ilerite exhibited the strongest luminescence intensity for all alkali cations, whereas EuM-kenyaite exhibited relatively weak luminescence intensity. The luminescence intensity was significantly increased by heat treatment at high temperature, mainly due to the phase change of host matrices and the presence of alkali cations in the host matrices. Particularly, the luminescence intensity of EuM-layered silicate calcined at 1,000 °C increased with the increase of the ion size of alkali cations.  相似文献   

15.
仇毅翔  王曙光 《化学学报》2006,64(17):1793-1798
采用密度泛函理论方法,在TZ2P-STO基组水平下,对金属四重键化合物M2Cl4(PMe3)4(M=Cr,Mo,W)和Mo2X4(PMe3)4(X=F,Cl,Br,I)的几何结构进行优化,分析了电子结构,并运用TDDFT方法对其低占据激发态进行了计算.考虑相对论效应的ZORA方法能够较好地重现M2X4(PMe3)4的几何结构.M2X4(PMe3)4的电子结构分析表明其d电子的组态为σ2π4δ2,前线轨道能级顺序为πlig<πd/σd<δd<δd*.金属原子和卤素配体的改变虽然使轨道能量发生变化,但没有影响轨道的排布顺序.TDDFT方法对M2X4(PMe3)4δd→δd*和πd→δd*跃迁能量的计算较为准确,对πlig→δd*(LMCT)跃迁能量的计算误差较大.金属原子、卤素配体以及相对论效应对激发能的影响可以根据分子轨道能级的变化给予解释.  相似文献   

16.
17.
Materials belonging to NASICON family of compositions NaHfM(PO4)3 and AgHfM(PO4)3 (M = Ti and Zr) are prepared by sol–gel and ion exchange methods, respectively. Ethylene glycol is used as a gelating agent. All the compositions are characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, 31P MAS NMR, UV–Vis DRS, XPS and energy dispersive spectral methods. All these phosphates are crystallized in rhombohedral lattice with space group $R\overline{3} c$ R 3 ¯ c . These compounds exhibit characteristic PO4 vibrational modes in their FT-IR spectra. The 31P MAS NMR gave broad signals indicating distribution of chemical environments around P ion. The dc and ac conductivity of AgHfM(PO4)3 (M = Ti and Zr) are higher compared to their sodium containing compounds. The Cole–Cole plots of impedance show semicircles between 373 and 623 K. The variation of dc conductivity with temperature follows the Arrhenius equation. The photocatalytic activity of all the samples was studied against methylene blue decomposition using sun light. AgHfM(PO4)3 (M = Ti and Zr) have shown higher photoactivity than the sodium containing Nasicons.  相似文献   

18.
Theoretical investigations are carried out on the title reactions by means of the direct dynamics method. The optimized geometries, frequencies and minimum energy path are obtained at the MP2/6-31 + G(d,p) level, and energetic information is further refined at the MC-QCISD (single-point) level. The rate constants for both reactions are calculated by the improved canonical variational transition state theory with the small-curvature tunneling correction in a wide temperature range 200–3,000 K. The theoretical rate constant is in good agreement with the available experimental data. Furthermore, the effects of different halogen substitution on the rate constants are also discussed.  相似文献   

19.
Synthetic, structural, thermogravimetric, M?ssbauer spectroscopic, and magnetic studies were performed on two new isotypic germanophosphates, M(II)(4)(H(2)O)(4)[Ge(OH)(2)(HPO(4))(2)(PO(4))(2)] (M(II) = Fe, Co), which have been prepared under hydro-/solvo-thermal conditions. Their crystal structures, determined from single crystal data, are built from zigzag chains of M(II)O(6)-octahedra sharing either trans or skew edges interconnected by [GeP(4)O(14)(OH)(4)](8-) germanophosphate pentamers to form three-dimensional neutral framework structure. The edge-sharing M(II)O(6)-octahedral chains lead to interesting magnetic properties. These two germanophosphates exhibit a paramagnetic to antiferromagnetic transition at low temperatures. Additionally, two antiferromagnetic ordering transitions at around 8 and 6 K were observed for cobalt compound while only one at 19 K for the iron compound. Low-dimensional magnetic correlations within the octahedral chains are also observed. The divalent state of Fe in the iron compound determined from the M?ssbauer study and the isothermal magnetization as well as thermal analyses are discussed.  相似文献   

20.
Five new complexes of general formula [PdX2(p-diben)], where p-diben = N,N′-bis(4-dimethylaminobenzylidene)ethane-1,2-diamine) (1) and X = Cl (2), Br (3), I (4), N3 (5), or CNO (6), were synthesized and characterized by physicochemical and spectroscopic methods. The crystal structure of compound (5) was determined by single-crystal X-ray diffraction. Complexes 26 were characterized as N,N-chelated products. The crystal structure confirmed this formulation for [Pd(N3)2(p-diben)], besides showing the isomerism inversion of one of the C=N bonds, caused by Pd(II) coordination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号