首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
压缩感知(CS)技术和并行成像技术(主要是SENSE技术、GRAPPA技术等)都能通过减少k空间数据的采集量来加快磁共振成像速度,目前已有一些将两种方法相结合进一步加速磁共振成像速度的方法(例如CS-GRAPPA).本文针对数据采集和重建这两方面对现有CS-GRAPPA方法进行了改进,采集方式上采用了局部等间隔采集模板以满足GRAPPA重建的要求,并对采集模板进行随机放置以满足CS重建的要求;数据重建时,根据自动校正数据估算GRAPPA算法中欠采行的重建误差,并利用误差的大小确定在CS算法中保真的程度.不同磁共振图像重建实验的结果表明:与现有方法相比,本文方法能够更好地保留原有图像细节并有效减少伪影.  相似文献   

2.
磁共振成像(MRI)无创无害、对比度多、可以任意剖面成像的特点特别适合用于心脏成像,却因扫描时间长限制了其在临床上的应用.为了解决心脏磁共振电影成像屏气扫描时间过长的问题,该文提出了一种基于同时多层激发的多倍加速心脏磁共振电影成像及其影像重建的方法,该方法将相位调制多层激发(CAIPIRINHA)技术与并行加速(PPA)技术相结合,运用到分段采集心脏电影成像序列中,实现了在相位编码方向和选层方向的四倍加速,并使用改进的SENSE/GRAPPA算法对图像进行重建.分别在水模以及人体上进行了实验,将加速序列图像与不加速序列图像进行对比,结果验证了重建算法的有效性,表明该方法可以在保障图像质量以及准确测量心脏功能的前提下成倍节省扫描时间.  相似文献   

3.
多通道磁共振成像方法采用多个接收线圈同时欠采样k空间以加快成像速度,并基于后处理算法重建图像,但在较高加速因子时,其图像重建质量仍然较差.本文提出了一种基于PCAU-Net的快速多通道磁共振成像方法,将单通道实数U型卷积神经网络拓展到多通道复数卷积神经网络,设计了一种结构不对称的U型网络结构,通过在解码部分减小网络规模以降低模型的复杂度.PCAU-Net网络在跳跃连接前增加了1×1卷积,以实现跨通道信息交互.输入和输出之间利用残差连接为误差的反向传播提供捷径.实验结果表明,使用规则和随机采样模板,在不同加速因子时,相比常规的GRAPPA重建算法和SPIRiT重建方法,本文提出的PCAU-Net方法可高质量重建出磁共振复数图像,并且相比于PCU-Net方法,PCAU-Net减少了模型参数、缩短了训练时间.  相似文献   

4.
螺旋MRI的网格化数据重建算法比较   总被引:2,自引:2,他引:0  
螺旋MRI的原始数据是在不均匀的 k- 空间螺旋轨迹上采样得到的,需要通过网格化算法等手段将数据变成等间距的网格数据后,才能采用FFT进行重建,最后得到供临床使用的图像. 本文对Jackson网格化算法和Claudia大矩阵算法的重建速度和图像结果进行了比较, 并得出以下结论:1)在获得相近图像质量的情况下,Claudia大矩阵重采样算法比Jackson算法要快且更方便在仪器上实现. 2)在Jackson双倍细网格算法的实现方式中,数据驱动插值比网格驱动插值更有效率. 3)在Claudia大矩阵重采样算法中,对冗余比大于310∶1的数据进行图像重建的时候,网格点的幅值不平均化比平均化后的效果还要好. 这几个结论都将有利于MRI图像重建技术的进一步提高.   相似文献   

5.
本文通过对鸟笼线圈原理和阵列线圈去耦原理的分析,提出了一种适用于自主研发的多核并行磁共振成像(MRI)系统的双核并行成像线圈设计方案,并在电感去耦的基础上提出LC并联trap去耦法,提高了去耦方法的可适性.依据设计方案制作了1H/31P双核并行成像线圈,并将其应用于4.7 T磁体系统,利用自主研发的多核并行MRI系统进行了并行成像实验测试,成功获得了1H和31P的并行磁共振图像,验证了设计方案的可行性.  相似文献   

6.
汪先超  闫镔*  刘宏奎  李磊  魏星  胡国恩 《物理学报》2013,62(9):98702-098702
本文基于数据重排方法, 提出了T-BPF (Tent-BPF)算法, 该算法先将锥束投影数据重排成平行投影数据, 然后使用一种推导的BPF型算法重建重排后的平行投影数据. T-BPF算法将原BPF算法反投影中变化的角度积分限变成固定的, 反投影中各层循环之间没有了相关性, 这意味着T-BPF算法较原BPF算法具有更好的可并行性. 实验结果显示: 使用GPU对2563的Shepp-Logan体模的图像重建进行并行加速, T-BPF算法在保证重建质量的前提下, 加速比达到了1036, 较原BPF算法有很大提升. T-BPF算法为截断投影数据的3D图像快速重建提供了方法. 关键词: X射线光学 CT 图像重建 GPU  相似文献   

7.
吴鹏  郭华 《波谱学杂志》2016,33(4):539-548
自适应重建(Adaptive Reconstruction,AR)算法被广泛应用于磁共振图像的多通道合并问题上.AR算法不需要直接采集各个线圈的灵敏度信息,而是通过通道间信号及噪声相关矩阵,估算出各个通道的灵敏度,从而保证了合并的幅值图像具有较高的信噪比(Signal-to-Noise Ratio,SNR).然而,由于AR算法没有针对相位图像的合并问题进行优化,导致重建出的相位图像具有不确定性.另外,受各通道之间相位偏移及低信噪比相位图像的影响,重建结果可能包含伪影.该文提出了一种改进型AR算法,估算并移除了各通道之间的相位偏移,同时对多通道数据的相位进行质量评估及通道重排,用以进行后续自适应重建.仿体及在体实验表明,该方法可以有效提升AR算法稳定性、消除重建图像中存在的伪影,同时保持合并后幅值图像及相位图像的高信噪比.  相似文献   

8.
陈蓝钰  常严  王雷  杨晓冬 《应用声学》2015,23(12):68-68
为了解决并行磁共振成像过程的病态性和图像信噪比下降问题,降低重建过程中噪声放大和异常值的干扰造成的图像信噪比的损失,提出了一种基于正则化共轭梯度迭代的并行磁共振成像重建算法;该算法基于最小二乘理论,引入正则化,优化方程,进而进行迭代重建;采用了不同加速因子的人脑磁共振K空间欠采样数据以验证该算法的重建性能,仿真结果表明了该算法相较于最小二乘法,能较大限度地降低噪声对重建结果的干扰,具有信噪比更高、误差更小、成像效果更好等特征;重建图像质量得到了较好的改善,对临床诊断更具有适用性。  相似文献   

9.
孙翠丽  魏东波  杨民 《光学技术》2007,33(3):345-347,351
分析了三维ICT近似重建FDK快速算法以及算法串行执行与并行执行的复杂度,利用MPI并行编程环境,对原有ICT重建流程进行并行化,在PC集群上实现了并行ICT重建,进行了系统集成。给出了系统应用实现的解决方案与软件集成流程图。实验结果证明串行重建和并行重建结果是一致的,并行重建可以得到比较理想地重建时间结果和比较理想的加速比与效率。  相似文献   

10.
冯忠奎  胡格丽  许莹  朱光  周峰  戴银明  王秋良 《物理学报》2013,62(23):230701-230701
本文发展了开放式自屏蔽全身成像高场超导磁共振成像(MRI)磁体的优化设计方法,使设计出来的磁体仅有4 对超导线圈. 这种开放结构的超导MRI磁体优化设计方法集成了线性规划算法和遗传算法. 通过迭代线性规划算法可以在考虑成像区域(DSV)磁感应强度约束、磁场不均匀度约束、5 Gs线范围约束、线圈区域最大磁场值约束和最大环向应力约束的条件下,获得用线量最少的线圈初始形状和位置,同时可以得到每个线圈的层数和每层匝数;通过遗传算法可以提高DSV区域的磁场不均匀度,以达到高质量成像的要求. 这种集成的优化设计方法既可以灵活有效的设计开放式MRI磁体,也可以设计传统的圆柱形MRI磁体,本文通过一个1.2 T的开放式MRI磁体的设计清楚的展示了这种优化方法. 关键词: 线性规划算法 遗传算法 自屏蔽 开放式超导MRI磁体  相似文献   

11.
Parallel magnetic resonance imaging (pMRI) and compressed sensing (CS) have been recently used to accelerate data acquisition process in MRI. Matrix inversion (for rectangular matrices) is required to reconstruct images from the acquired under-sampled data in various pMRI algorithms (e.g., SENSE, GRAPPA) and CS. Singular value decomposition (SVD) provides a mechanism to accurately estimate pseudo-inverse of a rectangular matrix. This work proposes the use of Jacobi SVD algorithm to reconstruct MR images from the acquired under-sampled data both in pMRI and in CS. The use of Jacobi SVD algorithm is proposed in advance MRI reconstruction algorithms, including SENSE, GRAPPA, and low-rank matrix estimation in L + S model for matrix inversion and estimation of singular values. Experiments are performed on 1.5T human head MRI data and 3T cardiac perfusion MRI data for different acceleration factors. The reconstructed images are analyzed using artifact power and central line profiles. The results show that the Jacobi SVD algorithm successfully reconstructs the images in SENSE, GRAPPA, and L + S algorithms. The benefit of using Jacobi SVD algorithm for MRI image reconstruction is its suitability for parallel computation on GPUs, which may be a great help in reducing the image reconstruction time.  相似文献   

12.
Combination of non-Cartesian trajectories with parallel MRI permits to attain unmatched acceleration rates when compared to traditional Cartesian MRI during real-time imaging. However, computationally demanding reconstructions of such imaging techniques, such as k-space domain radial generalized auto-calibrating partially parallel acquisitions (radial GRAPPA) and image domain conjugate gradient sensitivity encoding (CG-SENSE), lead to longer reconstruction times and unacceptable latency for online real-time MRI on conventional computational hardware. Though CG-SENSE has been shown to work with low-latency using a general purpose graphics processing unit (GPU), to the best of our knowledge, no such effort has been made for radial GRAPPA. Radial GRAPPA reconstruction, which is robust even with highly undersampled acquisitions, is not iterative, requiring only significant computation during initial calibration while achieving good image quality for low-latency imaging applications. In this work, we present a very fast, low-latency, reconstruction framework based on a heterogeneous system using multi-core CPUs and GPUs. We demonstrate an implementation of radial GRAPPA that permits reconstruction times on par with or faster than acquisition of highly accelerated datasets in both cardiac and dynamic musculoskeletal imaging scenarios. Acquisition and reconstruction times are reported.  相似文献   

13.
14.
Parallel imaging methods allow to increase the acquisition rate via subsampled acquisitions of the k-space. SENSE and GRAPPA are the most popular reconstruction methods proposed in order to suppress the artifacts created by this subsampling. The reconstruction process carried out by both methods yields to a variance of noise value which is dependent on the position within the final image. Hence, the traditional noise estimation methods – based on a single noise level for the whole image – fail. In this paper we propose a novel methodology to estimate the spatial dependent pattern of the variance of noise in SENSE and GRAPPA reconstructed images. In both cases, some additional information must be known beforehand: the sensitivity maps of each receiver coil in the SENSE case and the reconstruction coefficients for GRAPPA.  相似文献   

15.
Parallel imaging and compressed sensing have been arguably the most successful and widely used techniques for fast magnetic resonance imaging (MRI). Recent studies have shown that the combination of these two techniques is useful for solving the inverse problem of recovering the image from highly under-sampled k-space data. In sparsity-enforced sensitivity encoding (SENSE) reconstruction, the optimization problem involves data fidelity (L2-norm) constraint and a number of L1-norm regularization terms (i.e. total variation or TV, and L1 norm). This makes the optimization problem difficult to solve due to the non-smooth nature of the regularization terms. In this paper, to effectively solve the sparsity-regularized SENSE reconstruction, we utilize a new optimization method, called fast composite splitting algorithm (FCSA), which was developed for compressed sensing MRI. By using a combination of variable splitting and operator splitting techniques, the FCSA algorithm decouples the large optimization problem into TV and L1 sub-problems, which are then, solved efficiently using existing fast methods. The operator splitting separates the smooth terms from the non-smooth terms, so that both terms are treated in an efficient manner. The final solution to the SENSE reconstruction is obtained by weighted solutions to the sub-problems through an iterative optimization procedure. The FCSA-based parallel MRI technique is tested on MR brain image reconstructions at various acceleration rates and with different sampling trajectories. The results indicate that, for sparsity-regularized SENSE reconstruction, the FCSA-based method is capable of achieving significant improvements in reconstruction accuracy when compared with the state-of-the-art reconstruction method.  相似文献   

16.
In parallel magnetic resonance imaging (MRI), the problem is to reconstruct an image given the partial K-space scans from all the receiver coils. Depending on its position within the scanner, each coil has a different sensitivity profile. All existing parallel MRI techniques require estimation of certain parameters pertaining to the sensitivity profile, e.g., the sensitivity map needs to be estimated for the SENSE and SMASH and the interpolation weights need to be calibrated for GRAPPA and SPIRiT. The assumption is that the estimated parameters are applicable at the operational stage. This assumption does not always hold, consequently the reconstruction accuracies of existing parallel MRI methods may suffer. We propose a reconstruction method called Calibration-Less Multi-coil (CaLM) MRI. As the name suggests, our method does not require estimation of any parameters related to the sensitivity maps and hence does not require a calibration stage. CaLM MRI is an image domain method that produces a sensitivity encoded image for each coil. These images are finally combined by the sum-of-squares method to yield the final image. It is based on the theory of Compressed Sensing (CS). During reconstruction, the constraint that "all the coil images should appear similar" is introduced within the CS framework. This leads to a CS optimization problem that promotes group-sparsity. The results from our proposed method are comparable (at least for the data used in this work) with the best results that can be obtained from state-of-the-art methods.  相似文献   

17.
Parallel magnetic resonance imaging (MRI) (pMRI) uses multiple receiver coils to reduce the MRI scan time. To accelerate the data acquisition process in MRI, less amount of data is acquired from the scanner which leads to artifacts in the reconstructed images. SENSitivity Encoding (SENSE) is a reconstruction algorithm in pMRI to remove aliasing artifacts from the undersampled multi coil data and recovers fully sampled images. The main limitation of SENSE is computing inverse of the encoding matrix. This work proposes the inversion of encoding matrix using Jacobi singular value decomposition (SVD) algorithm for image reconstruction on GPUs to accelerate the reconstruction process. The performance of Jacobi SVD is compared with Gauss–Jordan algorithm. The simulations are performed on two datasets (brain and cardiac) with acceleration factors 2, 4, 6 and 8. The results show that the graphics processing unit (GPU) provides a speed up to 21.6 times as compared to CPU reconstruction. Jacobi SVD algorithm performs better in terms of acceleration in reconstructions on GPUs as compared to Gauss–Jordan method. The proposed algorithm is suitable for any number of coils and acceleration factors for SENSE reconstruction on real time processing systems.  相似文献   

18.
The generalized auto-calibrating partially parallel acquisition (GRAPPA) is an auto-calibrating parallel imaging technique which incorporates multiple blocks of data to derive the missing signals. In the original GRAPPA reconstruction algorithm only the data points in phase encoding direction are incorporated to reconstruct missing points in k-space. It has been recognized that this scheme can be extended so that data points in readout direction are also utilized and the points are selected based on a k-space locality criterion. In this study, an automatic subset selection strategy is proposed which can provide a tailored selection of source points for reconstruction. This novel approach extracts a subset of signal points corresponding to the most linearly independent base vectors in the coefficient matrix of fit, effectively preventing incorporating redundant signals which only bring noise into reconstruction with little contribution to the exactness of fit. Also, subset selection in this way has a regularization effect since the vectors corresponding to the smallest singular values are eliminated and consequently the condition of the reconstruction is improved. Phantom and in vivo MRI experiments demonstrate that this subset selection strategy can effectively improve SNR and reduce residual artifacts for GRAPPA reconstruction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号