首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acoustic phase conjugation is studied in a sandy marine sediment that contains air bubbles in its fluid fraction. The considered phase conjugation is a four-wave nonlinear parametric sound interaction caused by nonlinear bubble oscillations which are known to be dominant in acoustic nonlinear interactions in three-phase marine sediments. Two various mechanisms of phase conjugation are studied. One of them is based on the stimulated Raman-type sound scattering on resonance bubble oscillations. The other is associated with sound interactions with bubble oscillations whose frequencies are far from resonance bubble frequencies. Nonlinear equations to solve the phase conjugation problem are derived, expressions for acoustic wave amplitudes with a conjugate wave front are obtained and compared for various frequencies of the excited bubble oscillations.  相似文献   

2.
We present a model developed for studying the generation of stable cavitation bubbles and their motion in a three-dimensional volume of liquid with axial symmetry under the effect of finite-amplitude phased array focused ultrasound. The density of bubbles per unit volume is determined by a nonlinear law which is a threshold-dependent function of the negative acoustic pressure reached in the liquid, in which nuclei are initially distributed. The nonlinear mutual interaction of ultrasound and bubble oscillations is modeled by a nonlinear coupled differential system formed by the wave and a Rayleigh-Plesset equations, for which both the pressure and the bubble oscillation variables are unknown. The system, which accounts for nonlinearity, dispersion, and attenuation due to the bubbles, is solved by numerical approximations. The nonlinear acoustic pressure field is then used to evaluate the primary Bjerknes force field and to predict the subsequent motion of bubbles. In order to illustrate the procedure, a medium-high and a low ultrasonic frequency configurations are assumed. Simulation results show where bubbles are generated, the nonlinear effects they have on ultrasound, and where they are relocated. Despite many physical restrictions and thanks to its particularities (two nonlinear coupled fields, bubble generation, bubble motion), the numerical model used in this work gives results that show qualitative coherence with data observed experimentally in the framework of stable cavitation and suggest their usefulness in some application contexts.  相似文献   

3.
梁彬  朱哲民  程建春 《中国物理》2006,15(2):412-421
Based on the modification of the radial pulsation equation of an individual bubble, an effective medium method (EMM) is presented for studying propagation of linear and nonlinear longitudinal acoustic waves in viscoelastic medium permeated with air bubbles. A classical theory developed previously by Gaunaurd (Gaunaurd GC and \"{U}berall H, {\em J. Acoust. Soc. Am}., 1978; 63: 1699--1711) is employed to verify the EMM under linear approximation by comparing the dynamic (i.e. frequency-dependent) effective parameters, and an excellent agreement is obtained. The propagation of longitudinal waves is hereby studied in detail. The results illustrate that the nonlinear pulsation of bubbles serves as the source of second harmonic wave and the sound energy has the tendency to be transferred to second harmonic wave. Therefore the sound attenuation and acoustic nonlinearity of the viscoelastic matrix are remarkably enhanced due to the system's resonance induced by the existence of bubbles.  相似文献   

4.
This study investigates interaction between acoustic and non-acoustic modes, such as vorticity mode, in some class of a non-newtonian fluid called Bingham plastic. The instantaneous equations describing interaction between different modes are derived. The attention is paid to the nonlinear effects in the field of intense sound. The resulting equations which describe dynamics of both sound and the vorticity mode apply to both periodic and aperiodic sound of any waveform. They use only instantaneous quantities and do not imply averaging over the sound period. The theory is illustrated by an example of acoustic force of vorticity induced in the field of a Gaussian sound beam. Some unusual peculiarities in both sound and the vorticity induced in its field as compared to a newtonian fluid, are discovered.  相似文献   

5.
两种气泡混合的声空化   总被引:1,自引:0,他引:1       下载免费PDF全文
苗博雅  安宇 《物理学报》2015,64(20):204301-204301
将非线性声波方程和改进的Rayleigh-Plesset方程联立可以描述空化环境中的声场及相应的气泡动力学特征. 用时域有限差分方法模拟了圆柱形容器内两种气泡相互混合时的空化情况. 在烧杯内的稳态背景声场形成过程中, 瓶壁耗散吸收扮演了重要的角色. 在稳态背景声场的基础上, 分析了混合气泡与声场的相互作用、气泡之间的相互作用、混合情况下的频谱特性. 结果表明: 两种气泡平衡半径都不太大时, 气泡与声场的相互作用不强, 声场及气泡的行为也比较规律; 相反, 当其中一种气泡平衡半径相对比较大时, 声场与气泡具有较强的非线性相互作用, 声场及气泡的行为表现出复杂的特性.  相似文献   

6.
Generation of an acoustic wave by two pump sound waves is studied in a three-phase marine sediment, which consists of a solid frame and the pore water with air bubbles in it. To avoid shock-wave formation, the interaction is considered in the frequency range where there is a significant sound velocity dispersion. Nonlinear equations are obtained to describe the interaction of acoustic waves in the presence of air bubbles. An expression for the amplitude of the generated wave is obtained and numerical analysis of its dependence on distance and resonance frequency of bubbles is performed.  相似文献   

7.
含气泡液体中声传播的解析解及其强非线性声特性   总被引:9,自引:0,他引:9       下载免费PDF全文
声波在含气泡的液体中传播时,气泡的受迫振动会引起强的声散射,并且由于振动的非线性,使得气泡产生的次级波不仅含有基频成分,而且还会有高次谐波。本文从理论上描述了气泡个数随尺并给出了含气泡液体的等效非线性声参数B/A的计算公式理论与已有的实验观测符合较好,文中对含气泡水的声速和声衰减等特性也进行了讨论。  相似文献   

8.
声波在含气泡液体中的线性传播   总被引:1,自引:0,他引:1       下载免费PDF全文
王勇  林书玉  张小丽 《物理学报》2013,62(6):64304-064304
为了探讨含气泡液体对声波传播的影响, 研究了声波在含气泡液体中的线性传播. 在建立含气泡液体的声学模型时引入气泡含量的影响,建立气泡模型时引用 Keller的气泡振动模型并同时考虑气泡间的声相互作用,得到了经过修正的气泡振动方程. 通过对含气泡液体的声传播方程和气泡振动方程联立并线性化求解,在满足 (ω R0)/c << 1 的前提下,得到了描述含气泡液体对声波传播的衰减系数和传播速度. 通过数值分析发现,在驱动声场频率一定的情况下,气泡含量的增加及气泡的变小均会导致衰减系数增加和声速减小;气泡的体积分数和大小一定时, 驱动声场频率在远小于气泡谐振频率的情况下,声速会随驱动频率的增加而减小; 气泡间的声相互作用对声波传播速度及含气泡液体衰减系数的影响不明显.最终认为气泡的大小、 数量和驱动声场频率是影响声波在含气泡液体中线性传播的主要因素. 关键词: 含气泡液体 线性声波 声衰减系数 声速  相似文献   

9.
We present an experimental and a theoretical analysis of the hot chocolate effect. The sound effect is evaluated using time–frequency signal processing, resulting in a quantitative visualization by spectrograms. This method allows us to capture the whole phenomenon, namely to quantify the dynamics of the rising pitch. A general form of the time dependence volume fraction of the bubbles is proposed. We show that the effect occurs due to the nonlinear dependence of the speed of sound in the gas/liquid mixture on the volume fraction of the bubbles and the nonlinear time dependence of the volume fraction of the bubbles.  相似文献   

10.
Methods for the characterization of bubbles in sea water by acoustic scattering are analyzed. Nonstationary linear and nonlinear sound scattering methods are proposed. The transient linear and nonlinear sound scattering allows the scattering by resonant gas bubbles to be distinguished from the scattering by other microinhomogeneities. The application of parametric arrays in oceanic experiments, together with the broadband frequency analysis of the backscattering coefficient, allows information about bubbles in sea water to be obtained. Experimental results on sound scattering and gas bubble distribution functions are presented for different conditions in the ocean.  相似文献   

11.
胡静  林书玉  王成会  李锦 《物理学报》2013,62(13):134303-134303
从球状泡群气泡动力学方程出发, 考虑泡群间次级声辐射的影响, 得到了声场中两泡群共同存在时气泡振动的动力学方程, 并以此为基础探讨声波驱动下双泡群振动系统的共振响应特征. 由于泡群间气泡间的相互作用, 系统存在低频共振和高频共振现象, 两不同共振频率的数值与泡群内气泡的本征频率相关. 泡群内气泡的本征频率又受到初始半径、泡群大小和泡群内气泡数量的影响. 气泡自由振动和驱动声波的耦合激起泡群内气泡的受迫振动, 气泡初始半径、气泡数密度和驱动声波频率等都会影响泡群内气泡的振动幅值和初相位. 关键词: 气泡群 共振 声响应 超声空化  相似文献   

12.
Stimulated Raman-type acoustic scattering by bubble oscillations in three-phase marine sediments, which consist of a solid frame, the pore water, and air bubbles, is considered. A model is developed for the case of the bubbles surrounded by water. The acoustic properties of the sediments are described on the basis of the Biot theory of sound propagation in a fluid-saturated porous medium. Nonlinear wave equations are obtained for marine sediments containing air bubbles. Expressions for the nonlinear scattering coefficient and the threshold intensity of the exciting sound wave are derived. A possibility of an experimental observation of the scattering process is discussed.  相似文献   

13.
马艳  林书玉  徐洁 《物理学报》2018,67(3):34301-034301
计算了两个具有非球形扰动的气泡所组成系统的能量,并基于Lagrange方程得到了有声相互作用的非球形气泡的动力学方程和形状稳定性方程,研究了声场中非球形气泡间相互作用力对非球形气泡的形状不稳定性和气泡形状模态振幅的影响.研究结果表明声场中具有非球形扰动的气泡之间的耦合方式有两种:形状耦合模式和径向耦合模式,气泡之间的耦合方式取决于气泡形状扰动模态.由形状耦合及径向耦合产生的气泡之间的相互作用力能够改变单个气泡的形状不稳定及形状模态振幅,具体影响因素取决于声场驱动条件、气泡形状模态、相邻气泡的初始半径.  相似文献   

14.
Instantaneous acoustic heating of a fluid with thermodynamic relaxation is the subject of investigation. Among others, viscoelastic biological media described by the Maxwell model of the viscous stress tensor, belong to this type of fluid. The governing equation of acoustic heating is derived by means of the special linear combination of conservation equations in differential form, allowing the reduction of all acoustic terms in the linear part of the final equation, but preserving terms belonging to the thermal mode responsible for heating. The procedure of decomposition is valid for weakly nonlinear flows, resulting in the nonlinear terms responsible for the modes interaction. Nonlinear acoustic terms form a source of acoustic heating in the case of dominative sound, which reflects the thermoviscous and dispersive properties of a fluid. The method of deriving the governing equations does not need averaging over the sound period, and the final governing dynamic equation of the thermal mode is instantaneous. Some examples of acoustic heating are illustrated and discussed, conclusions about efficiency of heating caused by different sound impulses are made.  相似文献   

15.
王勇  林书玉  张小丽 《物理学报》2014,63(3):34301-034301
考虑到分布在液体中的气泡是声波在含气泡液体中传播时引起非线性的一个很重要的因素,本文研究了声波在含气泡液体中的非线性传播.将气体含量的影响引入到声波在液体中传播的方程中,从而得到声波在气液混合物中传播的数学模型.通过对该模型进行数值模拟发现,气体含量、驱动声场声压幅值及驱动声场作用时间均会影响到气液混合物中的声场分布及声压幅值大小.液体中的气泡会"阻滞"液体中声场的传播并将能量"聚集"在声源附近.对于连续大功率的驱动声场来说,液体中的气泡会"阻滞"气液混合物中声场及其能量的传播.  相似文献   

16.
The effect of static pressure on acoustic emissions including shock-wave emissions from cavitation bubbles in viscous liquids under ultrasound has been studied by numerical simulations in order to investigate the effect of static pressure on dispersion of nano-particles in liquids by ultrasound. The results of the numerical simulations for bubbles of 5 μm in equilibrium radius at 20 kHz have indicated that the optimal static pressure which maximizes the energy of acoustic waves radiated by a bubble per acoustic cycle increases as the acoustic pressure amplitude increases or the viscosity of the solution decreases. It qualitatively agrees with the experimental results by Sauter et al. [Ultrason. Sonochem. 15, 517 (2008)]. In liquids with relatively high viscosity (~200 mPa s), a bubble collapses more violently than in pure water when the acoustic pressure amplitude is relatively large (~20 bar). In a mixture of bubbles of different equilibrium radius (3 and 5 μm), the acoustic energy radiated by a 5 μm bubble is much larger than that by a 3 μm bubble due to the interaction with bubbles of different equilibrium radius. The acoustic energy radiated by a 5 μm bubble is substantially increased by the interaction with 3 μm bubbles.  相似文献   

17.
王飞  黄益旺  孙启航 《物理学报》2017,66(19):194302-194302
由于有机物质分解等原因,实际的海底沉积物中存在气泡,气泡的存在会显著影响沉积物低频段的声学特性,因此研究气泡对沉积物低频段声速的影响机理具有重要意义.考虑到外场环境的不可控性,在室内水池中搭建了大尺度含气非饱和沙质沉积物声学特性获取平台,在有界空间中应用多水听器反演方法首次获取了含气非饱和沙质沉积物300—3000 Hz频段内的声速数据(79—142 m/s),并同时利用双水听器法获取了同一频段的数据(112—121 m/s).在声波频率远低于沉积物中最大气泡的共振频率时,根据等效介质理论,将孔隙水和气泡等效为一种均匀流体,改进了水饱和等效密度流体近似模型.模型揭示了气泡对沉积物低频段声学特性的影响规律,理论上解释了沉积物中声速的降低.通过分析模型预报声速对模型参数的敏感性,根据测量得到的声速分布反演得到了沉积物不同区域的气泡体积分数,气泡体积分数从1.07%变化到2.81%.改进的模型为沉积物中气泡体积分数估计提供了一种新方法.  相似文献   

18.
Acoustic cavitation is the fundamental process responsible for the initiation of most of the sonochemical reactions in liquids. Acoustic cavitation originates from the interaction between sound waves and bubbles. In an acoustic field, bubbles can undergo growth by rectified diffusion, bubble-bubble coalescence, bubble dissolution or bubble collapse leading to the generation of primary radicals and other secondary chemical reactions. Surface active solutes have been used in association with a number of experimental techniques in order to isolate and understand these activities. A strobe technique has been used for monitoring the growth of a single bubble by rectified diffusion. Multibubble sonoluminescence has been used for monitoring the growth of the bubbles as well as coalescence between bubbles. The extent of bubble coalescence has also been monitored using a newly developed capillary technique. An overview of the various experimental results has been presented in order to highlight the complexities involved in acoustic cavitation processes, which on the other hand arise from a simple, mechanical interaction between sound waves and bubbles.  相似文献   

19.
This paper deals with the nonlinear propagation of ultrasonic waves in mixtures of air bubbles in water, but for which the bubble distribution is nonhomogeneous. The problem is modelled by means of a set of differential equations which describes the coupling of the acoustic field and bubbles vibration, and solved in the time domain via the use and adaptation of the SNOW-BL code. The attenuation and nonlinear effects are assumed to be due to the bubbles exclusively. The nonhomogeneity of the bubble distribution is introduced by the presence of bubble layers (or clouds) which can act as acoustic screens, and alters the behaviour of the ultrasonic waves. The effect of the spatial distribution of bubbles on the nonlinearity of the acoustic field is analyzed. Depending on the bubble density, dimension, shape, and position of the layers, its effects on the acoustic field change. Effects such as shielding and resonance of the bubbly layers are especially studied. The numerical experiments are carried out in two configurations: linear and nonlinear, i.e. for low and high excitation pressure amplitude, respectively, and the features of the phenomenon are compared. The parameters of the medium are chosen such as to reproduce air bubbly water involved in the stable cavitation process.  相似文献   

20.
Results from studying the interaction between gas bubbles and the field of a flow-through acoustic resonator, and the Raman scattering of acoustic waves by moving bubbles, are presented. The structure of the distribution of bubble concentration in the resonator is studied. It is shown that nonlinear scattering by moving bubbles can be used to image bubble objects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号