首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of a labile tungsten nitrile complex, [(Cp*)W(CO)2(NCMe)Me] (Cp*=η5‐C5Me5), with H3SiC(SiMe3)3 gave the hydrido(hydrosilylene) complex [(Cp*)(CO)2(H)W?Si(H){C(SiMe3)3}] ( 1a ). The hydrido(silylene) complex [(η5‐C5Me4Et)(CO)2(H)W?SiMes2] ( 2 ) (Mes=2,4,6‐Me‐C6H2) was synthesized by a similar reaction with H2SiMes2. There is a strong interligand interaction between the hydrido and silylene ligands of these complexes; this was confirmed by a neutron diffraction study of [D2] 1b , that is, the deuterido and η5‐C5Me4Et derivative of 1a . The exchange between the W? H and the Si? D groups was observed in the deuterido complex [D] 1a . This H/D exchange proceeded slowly at room temperature, but very rapidly under UV irradiation. Variable‐temperature NMR spectroscopy measurements show the dynamic behavior of carbonyl ligands in 1a . Complex 1a reacted with acetone at room temperature to give mainly a hydrosilylation product, [(Cp*)(CO)2(H)W?Si(OiPr){C(SiMe3)3}] ( 3a ), along with a siloxy complex, [(Cp*)(CO)2WO(Si(H)iPr{C(SiMe3)3})] ( 4a ). At low temperature, a different reaction, namely, α‐H abstraction, proceeded to give an equilibrium mixture of 1a and a dihydrido(silyl) complex, [(Cp*)(CO)2(H)2W(Si(H){OC(?CH2)Me}{C(SiMe3)3})] ( 5 ).  相似文献   

2.
Formation and Structure of the Cyclophosphanes P4(CMe3)2[P(CMe3)2]2 and P4(SiMe3)2[P(CMe3)2]2 n-Triphosphanes showing a SiMe3 and a Cl substituent at the atoms P1 and P2, like (Me3C)2P? P(SiMe3)? P(CMe3)Cl 3 or (Me3C)2P? P(Cl)? P(SiMe3)2 4 are stable only at temperatures below ?30°C. Above this temperature these compounds lose Me3SiCl, thus forming cyclotetraphosphanes, P4(CMe3)2[P(CMe3)2]2 1 out of 3 , P4(SiMe3)2[P(SiMe3)2]2 2a (cis) and 2b (trans) out of 4 . The formation of 1 proceeds via (Me3C)2P? P?PCMe3 5 as intermediate compound, which after addition to cyclopentadiene to give the Diels-Alder-adduct 6 (exo and endo isomers) was isolated. 6 generates 5 , which then forms the dimer compound 1 . Likewise (Me3C)2P? P?P-SiMe3 8 (as proven by the adduct 7 ) is formed out of 4 , leading to 2a (cis) and 2b (trans). Compound 1 is also formed out of the iso-tetraphosphane P[P(CMe3)2]2[P(CMe3)Cl] 9 , which loses P(CMe3)2Cl when warmed to a temperature of 20°C. 1 crystallizes monoclinically in the space group P21/a (no. 14); a = 1762.0(15) pm; b = 1687.2(18) pm; c = 1170.5(9) pm; β = 109.18(5)° and Z = 4 formula units in the elementary cell. The molecule possesses E conformation. The central four-membered ring is puckered (approx. symmetry 4 2m; dihedral angle 47.4°), thus bringing the substituents into a quasi equatorial position and the nonbonding electron pairs into a quasi axial position. The bond lengths in the four-membered ring of 1 (d (P? P) = 222.9 pm) are only slightly longer than the exocyclic bonds (221.8 pm). The endocyclic bond angles \documentclass{article}\pagestyle{empty}\begin{document}$ \bar \beta $\end{document}(P/P/P) are 85.0°, the torsion angles are ±33° and d (P? C) = 189.7 pm.  相似文献   

3.
Dinuclear Silylene Bridged Cyclopentadienylrhodiumbis(ethene) Complexes, Photochemical Reaction with Benzene Derivatives, and Selective Inclusion of Methylcyclopentane into the Crystal Lattice of [Me2Si{3-But-C5H3Rh(C2H4)2}2] By reaction of [{(C2H4)2RhCl}2] with Na2[Me2Si(C5H4)2] or with Li2[Me2Si(3-But-C5H3)2] in THF the dinuclear silylene bridged complexes [Me2Si{C5H4Rh(C2H4)2}2] 1 and [Me2Si{3-But-C5H3Rh(C2H4)2}2] 2 , respectively, were synthesized. Due to the asymmetric substitution of the five-membered rings and their hindered rotation around the Si? C axes, 2 is formed as three isomers. The X-ray structure analysis of 2 obtained from hexane reveals the selective inclusion of methylcyclopentane, the content of which in the solvent is about 17%, into the crystal lattice. UV irradiation of 1 in hexane in the presence of benzene causes elimination of the ethene ligands yielding the μ-η33 benzene complex [Me2Si(C5H4Rh2)2C6H6] which cannot be separated from unreacted 1 . However, separation is possible in case of the hexamethylbenzene compound 4 analogous with 3 .  相似文献   

4.
Metallacyclic complex [(Me2N)3Ta(η2‐CH2SiMe2NSiMe3)] ( 3 ) undergoes C?H activation in its reaction with H3SiPh to afford a Ta/μ‐alkylidene/hydride complex, [(Me2N)2{(Me3Si)2N}Ta(μ‐H)2(μ‐C‐η2‐CHSiMe2NSiMe3)Ta(NMe2)2] ( 4 ). Deuterium‐labeling studies with [D3]SiPh show H–D exchange between the Ta?D ?Ta unit and all methyl groups in [(Me2N)2{(Me3Si)2N}Ta(μ‐D)2(μ‐C‐η2‐CHSiMe2NSiMe3)Ta(NMe2)2] ([D2]‐ 4 ) to give the partially deuterated complex [Dn]‐ 4 . In addition, 4 undergoes β‐H abstraction between a hydride and an NMe2 ligand and forms a new complex [(Me2N){(Me3Si)2N}Ta(μ‐H)(μ‐N‐η2‐C,N‐CH2NMe)(μ‐C‐η2‐C,N‐CHSiMe2NSiMe3)Ta(NMe2)2] ( 5 ) with a cyclometalated, η2‐imine ligand. These results indicate that there are two simultaneous processes in [Dn]‐ 4 : 1) H–D exchange through σ‐bond metathesis, and 2) H?D elimination through β‐H abstraction (to give [Dn]‐ 5 ). Both 4 and 5 have been characterized by single‐crystal X‐ray diffraction studies.  相似文献   

5.
On the Reactivity of (η5-C5Me5)(CO)2FeP(SiMe3)2 Toward P-Chloromethylene phosphanes The reaction of (η5-C5Me5)(CO)2FeP(SiMe3)2 ( 2 ) with three equivalents of Cl? P?C(SiMe3)2 ( 3a ) afforded the 3-methanediyl-1,3,5,6-tetraphosphabicyclo[3.1.0]hex-2-ene (η5-C5Me5)(CO)2Fe? ( 6a ). In contrast, 2 reacts with two equivalents of Cl? P?C(Ph)SiMe3 ( 3b ) to give the thermolabile (η5-C5Me5) · (CO)2Fe? P[P?C(Ph)SiMe3]2 ( 4b ) which decomposed during the reaction with further 3b. 4 b was also obtained from (η5-C5Me5)(CO)2Fe? P(SiMe3)? P?C(SiMe3)2 ( 1a ) and two equivalents of 3b .  相似文献   

6.
On the Reactivity of Titanocene Complexes [Ti(Cp′)22‐Me3SiC≡CSiMe3)] (Cp′ = Cp, Cp*) towards Benzenedicarboxylic Acids Titanocene complexes [Ti(Cp′)2(BTMSA)] ( 1a , Cp′ = Cp = η5‐C5H5; 1b , Cp′ = Cp* = η5‐C5Me5; BTMSA = Me3SiC≡CSiMe3) were found to react with iodine and methyl iodide yielding [Ti(Cp′)2(μ‐I)2] ( 2a / b ; a refers to Cp′ = Cp and b to Cp′ = Cp*), [Ti(Cp′)2I2] ( 3a / b ) and [Ti(Cp′)2(Me)I] ( 4a / b ), respectively. In contrast to 2a , complex 2b proved to be highly moisture sensitive yielding with cleavage of HCp* [{Ti(Cp*)I}2(μ‐O)] ( 7 ). The corresponding reactions of 1a / b with p‐cresol and thiophenol resulted in the formation of [Ti(Cp′)2{O(p‐Tol)}2] ( 5a / b ) and [Ti(Cp′)2(SPh)2] ( 6a / b ), respectively. Reactions of 1a and 1b with 1,n‐benzenedicarboxylic acids (n = 2–4) resulted in the formation of dinuclear titanium(III) complexes of the type [{Ti(Cp′)2}2{μ‐1,n‐(O2C)2C6H4}] (n = 2, 8a / b ; n = 3, 9a / b ; n = 4, 10a / b ). All complexes were fully characterized analytically and spectroscopically. Furthermore, complexes 7 , 8b , 9a ·THF, 10a / b were also be characterized by single‐crystal X‐ray diffraction analyses.  相似文献   

7.
Mono- and Di-t-Butylcyclopentadienyl Carbonyl Complexes of Iron and Molybdenum — Crystal Structure of [Cp″Mo(CO)2]2 (Cp″ = n5-C5H3-t-Bu2-1,3) Cothermolysis of M(CO)m (M = Fe, m = 5; M = Mo, m = 6) with t-Bu-substituted cyclopentadienyls constitutes a simple synthesis of complexes of the type [Cp*M(CO)n]2 (CP* = n5-C5H3 (t-Bu), R, R = H, t-Bu; M = Fe, Mo; n = 2, 3). Each synthesis has an optimal temperature. The yield of Fe complexes decreases at temperatures above 130°C because of decomposition of the product. Optimal yields of [Cp*Mo(CO)3]2 are obtained at 130–140°C, whereas at 160°C complexes of the type [Cp*Mo(CO)2]2 with formal Mo? Mo triple bonds are obtained. The structure of the complexes is discussed on the basis of 1H-, 13C-NMR, IR, and mass spectrometry. The structure of [Cp″Mo(CO)2]2 (Cp″ = n5-C5H3t-Bu2-1,3) was determined by X-ray crystallography at ?95°C. It crystallises in the space group Pbca, with cell constants a = 1808.6(6), b = 1308.5(4), c = 2507.9(9) pm, Z = 8, R = 0.031 for 3794 reflections. The Mo? Mo bond length of 253.3 pm is very long for a formal triple bond. The Cp″? Mo? Mo? Cp″ axis is non-linear.  相似文献   

8.
Reactions of LiNPPh3 with the Cyclooctatetraenide Complexes [Ln(C8H8)Cl(THF)2]2 of Cerium and Samarium. Crystal Structures of [LiNPPh3]6, [Ln(C8H8)Li3Cl2(NPPh3)2(THF)3] (Ln = Ce, Sm) and [Li(THF)4][Sm(C8H8)2] LiNPPh3 reacts with the cyclooctatetraenide complexes [Ln(C8H8)Cl(THF)2]2 of cerium and samarium in tetrahydrofuran solution forming the phosphorane iminato complexes [Ln(C8H8)Li3Cl2(NPPh3)2(THF)3]. According to crystal structure analyses these complexes show heterocubane structures under participation of the lanthanoid metal atom, of the three Li atoms as well as of the two Cl und the two N atoms of the NPPh3 groups. The crystal structure of LiNPPh3 shows hexameric molecules with a Li6N6 polyhedron which is peripherally shielded by the phenyl groups. The structure of [Li(THF)4][Sm(C8H8)2], which has been isolated as a by-product, contains the samarium atom in a sandwichlike coordination by the two η8-C8H82– rings as it is also known from the corresponding anions with cerium and neodymium.  相似文献   

9.
Reactions of [R3Sb(OPri)2] with N-heterocylic carboxylic acids gave compounds of the type [R3Sb(O2C-Ar)2] (1) (R = Me, Et, Pri, Ph; Ar = 2-C5H4N, 2-C9H6N). The mono-bromo compound [Me3Sb(Br)(O2C-C5H4N)] (2) exists in equilibrium with [Me3Sb(O2C-C5H4N)2] and [Me3SbBr2]. All new compounds have been characterized by IR and NMR (1H and 13C{1H}) spectral data. X-ray structural analysis of one example, [Me3Sb(O2C-C5H4N)2], isolated as its monohydrate, revealed an essentially trigonal bipyramidal geometry for the antimony atom defined by three equilaterally disposed methyl groups and two oxygen atoms from monodentate carboxylate groups, in apical positions. The crystal structure is consolidated into a three-dimensional network by cooperative O-H?O, O-H?N and C-H?O interactions.  相似文献   

10.
Complexes of the type {Fp′(solvent)}+ PF6?, 3a–3d, (Fp′ = (η -C5Me5)Fe(CO)2, solvent = THF, CH3COCH3, CH3CN, or pyridine) are conveniently prepared by the reaction between Fp′2 and Cp2Fe+ PF6 (Cp = η5-C5H5) in the solvent under ambient conditions. The complexes {Fp′L}+ PF6?, 3e–3g, (L = CO, PPh3, P(OPh)3) are readily prepared from {Fp′THF}+. Fp′H is formed by treatment of 3a with NaBH4. Fp′SC(S)NMe2 can be prepared from 3a or 3e and NaSC(S)NMe2.  相似文献   

11.
Photochemical Reactions of Cyclopentadienylbis(ethene)rhodium with Phenanthrene, Acenaphthylene, and Triphenylene, and Unusual H Exchange between η2-Coordinated Phenanthrene or Acenaphthylene and η5-Cyclopentadienyl Ligands During UV irradiation of [CpRh(C2H4)2] (Cp = η5-C5H5) in hexane/ether in the presence of phenanthrene one ethene ligand is displaced by coordination of the 9,10 double bond of phenanthrene, and (η5-cyclopentadienyl) (η2-ethene)(η2-9,10-phenanthrene)rhodium ( 1 ) is formed. The analogous reaction in hexane in the presence of acenaphthylene occurs with formation of the complexes (η2-1,2-acenaphthylene)(η5-cyclopentadienyl)(2-ethene)rhodium 2 and bis(η2-1,2-acenaphthylene)(η5-cyclopentadienyl)rhodium 3 in which one and two ethene molecules of [CpRh(C2H4)2], respectively, are substituted by η2-1,2-acenaphthylene. The irradiation of [CpRh(C2H4)2] with triphenylene in hexane yields the compounds [CpRh(η4-1,2,3,4-triphenylene)] ( 4 ), [(CpRh)2(μ-η3: η3-triphenylene)] ( 5 ), and [(CpRh)332: η2: η2-triphenylene)] ( 6 ). Despite the partially very low yields the new complexes could be unequivocally characterized spectroscopically and in the case of 1 and 3 by X-ray structural analysis. The compounds 1 and 2 in solution reveal a novel dynamic behaviour; via an intramolecular C? H activation, exchange occurs between the protons of the η2-coordinated arene and the Cp ligand. The complex 4 in solution is fluxional, too.  相似文献   

12.
Transition Metal-substituted Acylphosphanes and Phosphaalkenes. 22. Insertions of Hexafluoroacetone into the PX-Bond of Metallophosphanes (η5-C5Me5)(CO)2M? PX2 (M = Fe, Ru; X = Me3Si, Cl). Structure Determination of (η5-C5Me5)(CO)2Fe? P(SiMe3)C(CF3)2(OSiMe3) Reaction of the metallophosphanes (η5-C5Me5)(CO)2M? P(SiMe3)2 ( 1a : M = Fe; 1b : M = Ru) with hexafluoroacetone (HFA) afforded the complexes (η5-C5Me5)(CO)2M? P(SiMe3)C(CF3)2(OSiMe3) ( 2a, b ). The attempted synthesis of a metallophosphaalkene from 2a by thermal elimination of hexamethyldisiloxane failed. The acid catalyzed hydrolysis of 2a afforded compound (η5-C5Me5) · (CO)2Fe? P(H)C(CF3)2(OSiMe3) ( 3 ). Hexafluoracetone and (η5-C5Me5)(CO)2Fe? PCl2 ( 4 ) under-went reaction to give the metallochlorophosphan (η5-C5Me5) · (CO)2Fe? P(Cl)? O? C(CF3)2Cl ( 5 ). Constitutions and configurations of the compounds ( 2–5 ) were established by elemental analyses and spectroscopic data (IR, 1H-, 13C, 19F-, 29Si-, 31P-NMR, MS). The molecular structure of 2a was determined by x-ray diffraction analysis.  相似文献   

13.
Unexpected Reduction of [Cp*TaCl4(PH2R)] (R = But, Cy, Ad, Ph, 2,4,6‐Me3C6H2; Cp* = C5Me5) by Reaction with DBU – Molecular Structure of [(DBU)H][Cp*TaCl4] (DBU = 1,8‐diazabicyclo[5.4.0]undec‐7‐ene) [Cp*TaCl4(PH2R)] (R = But, Cy, Ad, Ph, 2,4,6‐Me3C6H2 (Mes); Cp* = C5Me5) react with DBU in an internal redox reaction with formation of [(DBU)H][Cp*TaCl4] ( 1 ) (DBU = 1,8‐diazabicyclo[5.4.0]undec‐7‐ene) and the corresponding diphosphane (P2H2R2) or decomposition products thereof. 1 was characterised spectroscopically and by crystal structure determination. In the solid state, hydrogen bonding between the (DBU)H cation and one chloro ligand of the anion is observed.  相似文献   

14.
The complex η55-(CO)3Mn(C5H4-C5H4)(CO)2Fe-η15-C5H4Mn(CO)3 was synthesized by the reaction of η5-Cp(CO)2Fe-η15-C5H4Mn(CO)3 with BunLi (THF, ?78 °C) and then with anhydrous CuCl2. The complex μ-(C≡C)[C5H4(CO)2Fe-η15-C5H4Mn(CO)3]2 was prepared by the reaction of η5-IC5H4(CO)2Fe-η15-C5H4Mn(CO)3 with Me3SnC≡CSnMe3 (2:1) in the presence of Pd(MeCN)2Cl2.  相似文献   

15.
Reactions of [CpRhCl2]2 (Cp = η5-C5Me5 (Cp*), η5-C5Me4Et (Cp′), η5-C5H3 t Bu2(Cp″)) with in situ generated H2Se give triangular [Cp3Rh3Se2]2+ clusters. These clusters were isolated as PF6 salts and characterized with ESI-MS, 77Se, 1H NMR and DFT calculations. [Cp3Rh3Se2] undergoes two reversible two-electron reduction steps. Quantum-chemical calculations reveal non-trivial bonding situation in the cluster core and changes in the hapticity of the Cp* ligand upon reduction. Crystal structure of [Cp 3 * Rh3Se2][Re2(μ-Cl)3(CO)6]Cl · 3.3H2O has been determined.  相似文献   

16.
The pnictocenium salts [Cp*PCl]+[μCl]? ( 1 a ), [Cp*PCl]+[ClAl(ORF)3]? ( 1 b ), [Cp*AsCl]+[ClAl(ORF)3]? ( 2 ), and [(Cp*)2P]+[μCl]? ( 3 ), in which Cp*=Me5C5, μCl=(FRO)3Al? Cl? Al(ORF)3, and ORF=OC(CF3)3, were prepared by halide abstraction from the respective halopnictines with the Lewis superacid PhF→Al(ORF)3. 1 The X‐ray crystal structures of 1 a , 2 , and 3 established that in the half as well as in the sandwich cations the Cp* rings are attached in an η2‐fashion. By using one or two equivalents of the Lewis acid, the two new weakly coordinating anions [μCl]? and [ClAl(ORF)3]? resulted. They also stabilize the highly reactive cations in PhF or 1,2‐F2C6H4 solution at room temperature. The chloride ion affinities (CIAs) of a range of classical strong Lewis acids were also investigated. The calculations are based on a set of isodesmic BP86/SV(P) reactions and a non‐isodesmic reference reaction assessed at the G3MP2 level.  相似文献   

17.
Reaction of NiX2·DME (X = Cl, Br; DME = 1,2-Dimethoxyethane) with Cp′Li (Cp′ = η5-C5Me5) in THF at ?10°C yields as intermediates dimeric halogeno complexes [Cp′NiX]2 (I) as shown by mass spectroscopy. 1 reacts with neutral and anionic donor ligands viz. PPh3 to Cp′Ni(PPh3)X, 1,5-COD to [Cp′NiCOD]+, CpNa to CpCp′Ni and with COTLi2 to (Cp′Ni)2COT (COT = cyclooctatetraene). Analogously the reaction product from FeBr2·DME and Cp′Li at ?80°C in THF is converted by CpNa to CpCp′Fe and by CO to Cp′Fe(CO)2Br.  相似文献   

18.
Reactions of the Cycloheptatrienyl Complexes [η7-C7H7W(CO)3]BF4 and η7-C7H7Mo(CO)2Br with Neutral Ligands and the Electrochemical Reduction of the Wolfram Complex Compounds of the type [η7-C7H7M(CO)2L][BF4] (L = P(C6H5)3, As(C6H5)3, Sb(C6H5)3 for M = W and L = N2H4 for M = Mo) were synthesized and characterisized. The iodide η7-C7H7W(CO)2I reacts with the diphosphine ((C6H5)2PCH2)2 to give the trihapto complex η3-C7H7 W(CO)2I((C6H5)2PCH2)2. In the case of η7-C7H7Mo(CO)2 Br reaction with hydrazine leads to the substitution product [η7-C7H7 Mo(CO)2N2H4], which can be stabilized by large anions. The binuclear complex [C7H7W(CO)3]2 has been synthesized electrochemically.  相似文献   

19.
The paramagnetic ansa-niobocene [(Me2Si)25-C5H4)2NbCl2] (1) was obtained from the reaction of Li2[(Me2Si)2(C5H4)2] with [NbCl4(thf)2]. Further treatment with Li[AlH4] yielded [(Me2Si)25-C5H4)2NbH3] (3), which is prone to decomposition within a few days at room temperature both in solution and in the solid-state, thus affording primarily an insoluble black material. However, after heating or irradiation of a solution of 3 small quantities of the dimeric niobium hydride species, [(Me2Si)2{μ-(η15-C5H3)}(η5-C5H4)NbH]2 (4), were isolated and characterized by X-ray diffraction.  相似文献   

20.
The action of SMe2 on the ten-vertex nido-ruthenaborane [6-(η6-C6Me6)RuB9Hl3] ( 1 ) provides a high-yield route to the unsubstituted isocloso-ruthenaborane [1-(η6-C6Me6)RuB9H9] (2). The benzene analogue [1-(η6-C6Me6)RuB9H9] is prepared similarly. By contrast, reaction of (1) with PhNH2 gives a variety of B-phenylamino isocloso derivatives, including orange crystals of [1-(η6-C6Me6)-2-(PhNH)-isocloso-1-RuB 9 H8] ( 3 ), red-orange [1-(η6-C6Me6)-2,3-(PhNH)2-isocloso-1-RuB9H7] ( 4 ) and dark-red [1-(η6-C6Me6)-5,6,7-(PhNH)3-isocloso-1-RuB9H6] ( 5 ). Detailed 1H and 11B nmr properties of these various compounds are described. The structure of ( 3 ) has been established by a single-crystal X-ray diffraction study of the solvate [1-(η6-C6Me6)-2-(PhNH)-isocloso-1-RuB9H8] · 1/2 CH2Cl2; the crystals were monoclinic, space group C2/c, with a = 1895.1(3), b = 1556.6(3), c = 1716.4(3) pm, β = 104.37(1)° and z = 8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号