首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
聚丙烯-聚乙烯嵌段共聚物和相应共混物的热分析   总被引:2,自引:2,他引:2  
用DSC研究了预期为聚丙烯-聚乙烯两嵌段共聚物(PP-PE)和相应共混物(PP+PE)在热学性能上的差异。经用不同分子量的PP和PE及其共混物进行试验后发现,由于PP和PE在结晶时出现过冷的难易不同。在共混物降温热分析曲线上,当降温速率较快时仅出现一个放热峰,而降温速率较慢时出现PP和PE各自的结晶放热峰,从而解释了文献中的不同结果。并发现共混物的PP和PE熔融、结晶温度均较组分相同的嵌段共聚物的相应温度为高;嵌段共聚物中PP和PE的△H_f值均低于均聚物的△H_f值,而PE的值降低尤甚。我们认为这与嵌段间的共价键限制嵌段活动和结晶过程有关,从而确认DSC热分析可以作为识别是否为嵌段共聚物的一种方法. 本工作的结果表明,所研究的PP-PE试样具有嵌段结构。  相似文献   

2.
Difference in thermal behavior of presumed polypropylene-b-polyethylene block copolymers(PP-PE) and corresponding PP+PE blends was studied. Different views in the literature were unified in our observation that faster cooling rate yielded only one exothermal peak for the blends, while slower cooling rates revealed both PP and PE exothermal peaks. Further details on when a single or double exothermal peaks would appear are discussed. Melting and crystallization temperatures for both PP and PE in blends were found to be a few degrees higher than for PP and PE in block copolymers. Thus, thermal analysis can be used to identify PP-PE block copolymers. These phenomena and the lower △H_f-values of PP and PE in block copolymers than the △H_f-values of pure homo-PP and -PE (for PE even more so) are explained in terms of restricted block movement due to covalent bond between blocks and of crystallization processes in block copolymers. The presence of block structure in the PP-PE samples studied is inferred.  相似文献   

3.
The structure and properties of presumed block copolymers of polypropylene (PP) with ethylene-propylene random copolymers (EPR), i.e., PP-EPR and PP-EPR-PP, have been investigated by viscometry, transmission electron microscopy, dynamic mechanical analysis, differential scanning calorimetry, gel permeation chromatography, wide-angle x-ray diffraction, and other techniques testing various mechanical properties. PP-EPR and PP-EPR-PP were synthesized using δ-TiCl3-Et2-AlCl as a catalyst system. The results indicate that the intrinisic viscosity of these polymers increases with each block-building step, whereas the intrinsic viscosity of those prepared by chain transfer reaction (strong chain-transfer reagent hydrogen was introduced between block-building steps during polymerization) hardly changes with the reaction time. Compared with PP/EPR blends, PP-EPR-PP block copolymers have lower PP and polyethylene crystallinity, and lower melting and crystallization temperatures of crystalline EPR. Two relaxation peaks of PP and EPR appear in the dynamic spectra of blends. They merge into a very broad relaxation peak with block sequence products of the same composition, indicating good compatibility between PP and EPR in the presence of block copolymers. Varying the PP and EPR content affects the crystallinity, density, and morphological structure of the products, which in turn affects the tensile strength and elongation at break. Because of their superior mechanical properties, sequential polymerization products containing PP-EPR and PP-EPR-PP block copolymers may have potential as compatibilizing agents for isotactic polypropylene and polyethylene blends or as potential heat-resistant thermoplastic elastomers.  相似文献   

4.
The effect of time-temperature treatment on morphology of polyethylene-polypropylene (PE-PP) blends wasstudied to establish a relationship between thermal history, morphology and mechanical properties. Polypropylene (PP)homopolymers were used to blend with various polyethylenes (PE), including high density polyethylene (HDPE), lowdensity polyethylene (LDPE), linear low density polyethylene (LLDPE), and very and ultra low density polyethylene(VLDPE and ULDPE). The majority of the blends were prepared at a ratio of PE:PP = 80:20, while blends of PP and LLDPEwere prepared at various compositions. Thermal treatment was carried out at temperatures between the crystallizationtemperatures of PP and PEs to allow PP to crystallize first from the blends. On cooling further, PE crystallized too. A verydiffuse PP spherulite morphology in the PE matrix was formed in some partially miscible blends when PP was less than 20%by mass. Droplet-matrix structures were developed in other blends with either PP or PE as dispersed domains in a continuousmatrix, depending on the composition ratio. The scanning electron microscopy (SEM) images displayed a fibrillar structureof PP spherulite in the LLDPE-PP (80:20) and large droplets of PP in the HDPE-PP (80:20) blend, providing larger surfacearea and better bonding in the LLDPE-PP (80:20) blends. This explains why the blends with diffuse spherulite morphologyshowed greater improvement in tensile properties than droplet-matrix morphology blends after time-temperature treatment.  相似文献   

5.
Polyethylene‐polycaprolactone graft copolymers with different chemical structures (i.e. different number and length of PCL grafts and molecular weight of PE backbone) were synthesized from various EVOH copolymers and ϵ‐caprolactone, using Aluminum isopropoxide as catalyst, and were tested for their compatibilizing capability in PE/PVC blends. PE and PCL segments in the graft copolymers were found completely immiscible, while PCL segments of the graft copolymers were found completely miscible with PVC. When graft copolymers were added to PE/PVC blends they proved to be good agents for the dispersion of PVC phase in the PE matrix. SEM showed also improved adhesion between the dispersed PVC phase and PE matrix. Moderate improvements in mechanical properties were also observed in preliminary tensile tests.  相似文献   

6.
张杰 《高分子科学》2016,34(2):164-173
The crystallization behavior, rheological behavior, mechanical properties and microstructures of injection molded isotactic polypropylene(i PP), polypropylene random copolymer(co-PP) and i PP/co-PP blends were investigated. Differential scanning calorimetry(DSC) and dynamic rheological analysis illustrated that i PP and co-PP were compatible in the blends and co-PP uniformly dispersed in the i PP phase. Polarizing optical microscope(POM) was adopted to observe the crystal size and morphology evolution. The results of mechanical properties and scanning electron microscopy(SEM) indicated that the crystal size of i PP in i PP/co-PP blends(10 wt% co-PP + 90 wt% i PP and 30 wt% co-PP + 70 wt% i PP) radically decreased after the incorporation of co-PP. During crystallization, the molecular chain segments of co-PP could penetrate i PP spherulites and form a network-like crystalline structure. The network-like crystal structure could effectively transmit stress and consume more energy to overcome intermolecular forces to resist stretching. In this way, the strength would improve to a certain degree. The impact fracture mechanism of i PP/co-PP blends is quasi ductile fracture by multiple crazes. Our work discovered that the blends containing 10 wt% and 30 wt% of co-PP exhibited prominent toughness and reinforcement.  相似文献   

7.
The compatibilizing effect of di‐, tri‐, penta‐, and heptablock (two types) copolymers with styrene and butadiene blocks was studied in polystyrene/polypropylene (PS/PP) 4/1 blends. The structure of PS/PP blends with the addition of 5 or 10 wt % of a block copolymer (BC) was determined on several scale levels by means of transmission electron microscopy (TEM) and small‐angle X‐ray scattering (SAXS). The results of the structure analysis were correlated with measured stress‐transfer properties: elongation at break, impact, and tensile strength. Despite the fact that the molar mass of the PS blocks in all the BCs used was about 10,000, that is, below the critical value M* (~18,000) necessary for the formation of entanglements of PS chains, all the BCs used were found to be good compatibilizers. According to TEM, a certain amount of a BC is localized at the interface in all the analyzed samples, and this results in a finer dispersion of the PP particles in the PS matrix, the effect being more pronounced with S‐B‐S triblock and S‐B‐S‐B‐S pentablock copolymers. The addition of these two BCs to the PS/PP blend also has the most pronounced effect on the improvement of mechanical properties of these blends. Hence, these two BCs can be assumed to be better compatibilizers for the PS/PP (4/1) blend than the S‐B diblock as well as both S‐B‐S‐B‐S‐B‐S and B‐S‐B‐S‐B‐S‐B heptablock copolymers. In both types of PS/PP/BC blends (5 or 10 wt % BC), the BC added was distributed between both the PS/PP interface and the PS phase, and, according to SAXS, it maintained a more or less ordered supermolecular structure of neat BCs. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 931–942, 2001  相似文献   

8.
In this article, epitaxial structures have been successfully obtained in the isotactic polypropylene (iPP)/polyethylene (PE) blends by an accessible injection molding methods. By studying a series of iPP/PE blends, the evolution of the epitaxial growth of PE lamellae on the oriented iPP lamellae has been detailedly discussed via wide‐angle X‐ray diffraction, small‐angle X‐ray scattering, scanning electron microscopy and differential scanning calorimetry. Unexpectedly, the exactly epitaxial angles between peculiarly arranged PE lamellae and oriented PP lamellae are all larger than the classical epitaxy theory value of 50°, and it even increases gradually with increasing PP content. It is inferred that the special crystallization of PE is the consequence of joint construction of the oriented PP crystals and the continuous intense shear field provided by pressure vibration injection molding. The epitaxial structures play a positive role in the interfacial connection between two components; thus, the mechanical properties of the blends are improved. This work provides an insight understanding on the formation mechanism of the epitaxy crystallization under shear field. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
用Ziegler-Natta(Z-N)催化剂MgCl2/TiCl4/BMF-AlEt3(BMF代表内给电子体9,9-二甲氧基甲基芴),采用分段聚合的方法制备了PP/EPR原位共混物,通过改变乙丙共聚的时间调节聚合物中乙烯的含量.使用核磁共振(13C-NMR)、凝胶渗透色谱(GPC)、示差扫描量热分析法(DSC)、动态力学分析(DMA)、扫描电子显微镜(SEM)和偏光显微镜(PLM)等研究了聚合物的结构和形态特征.研究发现,分段聚合制备的PP/EPR共混物是一种包括丙烯均聚物、乙丙无规和嵌段共聚物在内的多组分混合物.动态力学的结果显示混合物中聚丙烯与乙丙无规共聚物的玻璃化转变峰出现了内移现象,说明两者呈现部分相容性.扫描电镜的照片表明了聚丙烯基体与乙丙无规共聚物分散相之间的相界面模糊,两相之间的相容性较好.随着聚合物中乙烯含量的增加,分散相出现明显的塑性变形,同时,聚丙烯的结晶形态也发生明显的变化,球晶的尺寸逐渐变小,同时球晶变得不完善.  相似文献   

10.
利用DSC和偏光显微镜等手段研究了部分成核剂对聚丙烯均聚物(PP)、低乙烯含量聚丙烯共聚物及聚丙烯/聚乙烯(PP/PE)共混物结晶行为的影响,结果表明所用成核剂对PP和改性PP具有一定的普适性。聚丙烯共聚物中,由于链结构规整性变差,成核剂的作用显得特别突出,而PP/PE共混物中,由于成核剂向PE相迁移而使其对PP结晶的成核效率降低。  相似文献   

11.
用DSC、~(13)C-NMR、SEM和WAXD等方法研究了IPP/HDPE/EPDM三元共混体系的组分分布、相容性和结晶行为。实验结果表明,EPDM与PE组分的相容性优于与PP组分的相容性,多数EPDM分子链段能够分布在PE组分中;EPDM含量为15%时,共混物相容性最好,SEM照片呈现晶体微区的互连或网络状结构;随EPDM含量增加,总结晶度X_c减小,其中PE组分结晶度X_(cE)有较大幅度地降低,PP组分结晶度X_(cp)基本没有变化,这可以根据EPDM和PE、PP之间相容性的差异以及PE、PP两组分在冷却过程中不同的结晶行为来解释。  相似文献   

12.
The properties of styrene-butadiene-styrene (SBS) block copolymers do not only depend on the butadiene content and the degree of polymerisation but also on their chain architecture. In this contribution we present the results of a low-field time domain (TD) NMR study in which the transverse relaxation behaviour of different SBS block copolymers was analysed and correlated with findings from mechanical testing on pure and blended materials and transmission electron microscopy data which provide information on the microphase separation.The results indicate that while a straightforward determination of the butadiene content as in blended materials like ABS is not possible for these materials, the TD-NMR results correlate quite well with the mechanical performance of blends from SBS block copolymers with general purpose polystyrene (GPPS), i.e. industrial grade homopolymer polystyrene. Temperature-dependent experiments on pure and blended materials revealed a slight reduction in the softening temperature of the GPPS fraction in the blends.  相似文献   

13.
The polypropylene-graft-polyisoprene(PP-g-PIP) copolymers with different side chain length were synthesized by the combination of solid phase graft and anionic polymerization. The copolymers were characterized by nuclear magnetic resonance spectrum(~1H-NMR), gel permeation chromatography(GPC) and differential scanning calorimetry(DSC). Five PP/PP-g-PIP blends with PP-g-PIP as a flexibilizer to toughen PP were prepared and characterized by scanning electron microscope(SEM), dynamic mechanical analysis(DMA), DSC, wide-angle X-ray diffraction(WAXD). Their morphologies, glass transition temperatures, crystallinity and mechanical properties were investigated. All the results pointed out that the covalent bonding of PP and PIP increased the compatibility and interfacial adhesion, which led to PIP well dispersed in the system and small size PIP particles in the binary blends. In addition, the toughness of PP was improved while its tensile strength slightly decreased.  相似文献   

14.
A side-chain liquid crystalline ionomer(SLCI) was synthesized by grafting copolymerization of 4-(4-ethoxybenzoyloxy)-4′-allyloxybiphenyl and N-allyl-pyridium bromide on polymethylhydrosiloxane. The SLCI was blended with polypropylene(PP) and polybutylene terephthalate(PBT) by melt mixing. The thermal behavior, liquid crystalline properties, morphological structure, and mechanical properties of the blends were investigated by differential scanning calorimetry(DSC), polarizing optical microscopy(POM), scannin...  相似文献   

15.
Isotactic polypropylene (PP) was blended in extruder with 0–50% addition of styrene–ethylene/butylene–styrene (SEBS) and styrene–butadiene–styrene (SBS) block copolymers. Granulated blends were irradiated with electron beam (60 kGy) and 1 week later processed with injection molding machine. Properties of samples molded from irradiated and non-irradiated granulates were investigated using DSC, WAXS, MFR, SEM and mechanical and solubility tests. It was found that the SEBS based systems are more resistant to irradiation in comparison to similar blends with SBS copolymer. Such behavior can be explained by the presence of double bonds in elastic SBS block. Irradiation of PP-SBS blends leads to considerable structure changes of crystalline and amorphous PP phases and elastic SBS phase. It indicates creation of new (inter)phase consisting of products of grafting and cross-linking reactions. Irradiated PP-SBS blends show significant improvement of impact strength at low temperatures.  相似文献   

16.
PTW对PA1010/PP共混物的增容作用   总被引:2,自引:0,他引:2  
为了增加聚酰胺1010/聚丙烯(PA1010/PP)共混物的相容性,提高共混物的力学性能,采用一种新型的反应型增容剂乙烯-丙烯酸丁酯-甲基丙烯酸缩水甘油酯共聚物(PTW)进行增容,通过扫描电镜(SEM)、力学性能、傅里叶变换红外光谱(FTIR)和差示扫描量热(DSC)测试,研究了PTW对PA1010/PP共混物的增容作用.结果表明,随着PTW的加入,共混物的相区尺寸明显变小,当PA1010/PP/PTW质量比为70∶30∶7时,分散相尺寸细小而均匀,表明PTW有较好的增容作用.FTIR结果表明,PTW上的环氧基团和PA1010在熔融共混中发生了化学反应.DSC研究结果表明,PA1010的结晶温度随PTW的加入而降低,说明PTW对PA1010结晶有抑制作用.另外,PTW的加入使PP的结晶温度下降,当PTW质量分数为5%时出现2个结晶峰,即出现异相成核结晶和均相成核结晶,PP均相成核结晶的出现从另一个方面说明,在PA1010基体中分散相PP尺寸非常细小.当PTW质量分数为7%时共混物的力学性能最佳,干态冲击强度达到13.93kJ/m2,是未加增容剂时的2倍,拉伸和弯曲性能基本不变.PTW的增容机理在于其分子链中的甲基丙烯酸缩水甘油酯能与PA1010发生化学反应,而乙烯链段与PP有较好的亲和性,从而降低界面张力,减少相区尺寸,大幅度提高力学性能.  相似文献   

17.
A new method was used to prepare thermoplastic elastomers based on polypropylene (PP)/recycled acrylonitrile butadiene rubber (NBRr) with improved mechanical properties. An epoxy resin (EP) was used as a compatibilizing agent. The effect of EP on mechanical properties, swelling percentage and morphological characteristics of the blends was investigated with different blend compositions. The results showed that the incorporation of EP has improved the tensile strength, Young's modulus and elongation at break of PP/NBRr-EP blends compared with PP/NBRr blends. The enhancement of tensile properties of PP/NBRr-EP blends is due to the better adhesion between the two phases with the incorporation of EP. This is quite evident by scanning electron microscopy of tensile fractured surfaces. PP/NBRr-EP blend exhibits lower stabilization torque and swelling percentage than PP/NBRr blends. The lower stabilization torque is an indication of better processing characteristics.  相似文献   

18.
Wide-angle X-ray scattering from presumed block copolymers of polypropylene (PP) and ethylene-propylene copolymer (EPR), i.e., PP-EPR and PP-EPR-PP, synthesized by sequential polymerization with δ-TiCl3? Et2AlCl, was examined and compared with WAXS of mechanical blends and chain-transfer mixtures of PP and EPR with comparable compositions. The peak at 2θ = 20° for both the copolymers and the mixtures was attributed to the γ modification of PP in EPR. A strong variation in the ratio of diffraction intensities I040/I110 of PP in block copolymers and mixtures was explained in terms of crystallite growth in different directions. Analysis of the patterns and calculation of crystallinity, crystallite size, and lattice parameters led to the conclusion that block structure existed in the prepared copolymers.  相似文献   

19.
The polypropylene-graft-polyisoprene (PP-g-PIP) copolymers with different side chain length were synthesized by the combination of solid phase graft and anionic polymerization. The copolymers were characterized by nuclear magnetic resonance spectrum (1H-NMR), gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). Five PP/PP-g-PIP blends with PP-g-PIP as a flexibilizer to toughen PP were prepared and characterized by scanning electron microscope (SEM), dynamic mechanical analysis (DMA), DSC, wide-angle X-ray diffraction (WAXD). Their morphologies, glass transition temperatures, crystallinity and mechanical properties were investigated. All the results pointed out that the covalent bonding of PP and PIP increased the compatibility and interfacial adhesion, which led to PIP well dispersed in the system and small size PIP particles in the binary blends. In addition, the toughness of PP was improved while its tensile strength slightly decreased.  相似文献   

20.
聚丙烯和聚酯-聚醚多嵌段共聚物的熔融共混物是微多相分散体系,其力学性能和软链段的结构有关。DSC和偏光显微镜图分别表明共混物中聚丙烯结晶度以及球晶尺寸随聚酯-聚醚的混入量而变小。聚丙烯和少量聚酯-聚醚多嵌段共聚物共混,可改进聚丙烯的流变性,吸湿性和染色性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号