首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In bilayer graphene, mutual rotation of layers has strong effect on the electronic structure. We theoretically study the distribution of electron density in twisted bilayer graphene with the rotation angle of 21.8° and find that regions with AA‐like and AB‐like stacking patterns separately contribute to the interlayer low‐energy van Hove singularities. In order to investigate the peculiarities of interlayer coupling, the charge density map between the layers is examined. The presented results reveal localization of π‐electrons between carbon atoms belonging to different graphene layers when they have AA‐like stacking environment, while the interlayer coupling is stronger within AB‐stacked regions.

Charge density map for bilayer graphene with a layer twist of 21.8° (interlayer region).  相似文献   


2.
An observation of negative refraction in the naturally obtained composition of graphene and barium ferrite is reported. The capacitance and inductance measurements revealed the electric and magnetic resonances accompanied with the negative values of permittivity and permeability in the overlapped frequency range. According to the “left‐handed” media approach such a material is characterized by negative refraction. The derived values of the real part of refractive index are negative at the frequencies above 500 MHz.

  相似文献   


3.
We theoretically study the strain effect on the Casimir interactions in graphene based systems. We found that the interactions between two strained graphene sheets are strongly dependent on the direction of stretching. The influence of the strain on the dispersion interactions is still strong in the presence of dielectric substrates but is relatively weak when the substrate is metallic. Our studies would suggest new ways to design next generation devices.

  相似文献   


4.
Despite the great promise of printed flexible electronics from 2D crystals, and especially graphene, few scalable applications have been reported so far that can be termed roll‐to‐roll compatible. Here we combine screen printed graphene with photonic annealing to realize radio‐frequency identification devices with a reading range of up to 4 meters. Most notably our approach leads to fatigue resistant devices showing less than 1% deterioration of electrical properties after 1000 bending cycles. The bending fatigue resistance demonstrated on a variety of technologically relevant plastic and paper substrates renders the material highly suitable for various printable wearable devices, where repeatable dynamic bending stress is expected during usage. All applied printing and post‐processing methods are compatible with roll‐to‐roll manufacturing and temperature sensitive flexible substrates providing a platform for the scalable manufacturing of mechanically stable and environmentally friendly graphene printed electronics.

  相似文献   


5.
A Cu‐based organic–inorganic perovskite framework exhibits high‐temperature ferroelectricity with strong magnetoelectric effects. Both electric field control of magnetization and magnetic field control of polarization are realized. Theoretical calculations suggest that a new mechanism of hybrid improper ferroelectricity arising from the Jahn–Teller distortions of magnetic metal ions and tilting of the organic cations are responsible for the peculiar multiferroic behaviors.

  相似文献   


6.
A concept is presented that uses epitaxial graphene on silicon carbide (SiC) for digital circuits. It uses graphene as a metal and the underlying substrate SiC as semiconductor. On the base of transistors with excellent switching behavior, Inverter and NAND operation is demonstrated.

  相似文献   


7.
The α‐PbO2‐type TiO2 is synthesized under high‐pressure and high‐temperature environment and it shows higher photocatalytic activity as compared to rutile and anatase under UV irradiation. The reduction in α‐PbO2‐type TiO2 induces visible‐light photocatalytic activity. These results indicate that α‐PbO2‐type TiO2 is an important candidate material for use in a photocatalytic matrix.

  相似文献   


8.
Surface‐diffusion‐induced spontaneous Ga incorporation process is demonstrated in ZnO nanowires grown on GaN substrate. Crucially, contrasting distributions of Ga atoms in axial and radial directions are experimentally observed. Ga atoms uniformly distribute along the ~10 μm long ZnO nanowire and show a rapidly gradient distribution in the radial direction, which is attributed substantially to the difference between surface and volume diffusion. The understanding on the incorporation process can potentially modulate doping and properties in semiconductor nanomaterials.

  相似文献   


9.
Si thin films on glass grown by liquid phase crystallization (LPC) exhibit large grains resembling those in multicrystalline Si wafers. The present work gives direct insight into how planar defects in LPC‐Si thin films influence the device performance of the corresponding solar cells by acquiring electron‐backscatter diffraction maps and measuring solar cell parameters on the same identical positions. By this approach, it was possible to demonstrate how low scanning velocities of the laser line during the crystallization lead to lower densities of grain boundaries, to improved charge‐carrier diffusion lengths, and hence to improved device performances.

  相似文献   


10.
Transition absorption of a photon by an electron passing through a boundary between two media with different permittivities is described both classically and quantum mechanically. Transition absorption is shown to make a substantial contribution to photoelectron emission at a metal/semicon‐ductor interface in nanoplasmonic systems, and is put forth as a possible microscopic mechanism of the surface photoelectric effect in photodetectors and solar cells containing plasmonic nanoparticles.

  相似文献   


11.
Polymers such as benzocyclobutene are commonly used as embedding materials for semiconductor nanostructures. During the curing process of the polymer up to 250 °C, a significant impact of strain can be induced on the embedded semiconductor material due to different thermal expansion coefficients. This strain has been revealed by X‐ray diffraction in free‐standing GaAs nanowires grown on a silicon substrate, embedded in a polymer matrix. It will be shown that this strain is released during the X‐ray irradiation if additionally an external static electric field is applied.

  相似文献   


12.
We reported the characteristics of p‐type tin‐oxide (SnO) thin film transistors (TFTs) upon illumination with visible light. Our p‐type TFT device using the SnO film as the active channel layer exhibits high sensitivity toward the blue‐light with a high light/dark read current ratio (Ilight/Idark) of 8.2 × 103 at a very low driven voltage of <3 V. Since sensing of blue‐light radiation is very critical to our eyes, the proposed p‐type SnO TFTs with high sensitivity toward the blue‐light show great potential for future blue‐light detection applications.

  相似文献   


13.
Metal–insulator–metal capacitors (MIMCAP) with stoichiometric SrTiO3 dielectric were deposited stacking two strontium titanate (STO) layers, followed by intermixing the grain determining Sr‐rich STO seed layer, with the Ti‐rich STO top layer. The resulted stoichiometric SrTiO3 would have a structure with less defects as demonstrated by internal photoemission experiments. Consequently, the leakage current density is lower compared to Sr‐rich STO which allow further equivalent oxide thickness downscaling.

Schematic of MIMCAP with stoichiometric STO dielectric formed from bottom Sr‐rich STO and top Ti‐rich STO after intermixing during crystallization anneal.  相似文献   


14.
Phosphorus prefers three‐connected configurations due to its inequivalent sp3‐hybridization. In the past year, many quasi two‐dimensional three‐connected networks were proposed as possible phosphorene allotropes. In this Letter, a new quasi two‐dimensional three‐connected network is proposed as a new potential phosphorene allotrope (Hex‐star). Based on first‐principles method calculations, the structure, stability and electronic properties of Hex‐star were systematically investigated. Our results indicate that Hex‐star is dynamically stable and it is a semiconductor with quasi‐direct band gap of 1.81 eV based on HSE06 method. Perspective top view (left) and Magen–David‐like orthographic top view (right) of Hex‐star phosphorene.

  相似文献   


15.
16.
This work demonstrates the formation of Ag fractals on top of a Ag:TiO2 thin film. The dendrite‐type objects emerged from a homogeneous and highly transparent Ag:TiO2 nanocomposite, via the mechanism of diffusion‐limited‐aggregation of Ag atoms, during heat‐treatment at 500 °C. A porous TiO2 matrix was also formed during this process, opening a wide range of possible applications, namely in sensing‐based ones, together with surface enhanced spectroscopies. Furthermore, fractals incorporate a wide range of shapes and spatial scales, inducing a potentially interesting optical response, over the whole visible range, presumably related with localized surface plasmon modes with very broad spectral distribution.

  相似文献   


17.
Polymer light‐emitting electrochemical cells (LECs) are two‐terminal, solid state devices with a mixed ionic/electronic conductor as the active layer. Once activated by a DC voltage or current, a doping‐induced homojunction dictates the electrical and optical response of the LEC, making it highly unique and attractive among organic devices. However, the depletion width, a fundamental parameter of any semiconductor homojunction, has never been determined experimentally for a static LEC junction. In this study, we apply spatially resolved photocurrent and photoluminescence (PL) scanning to an extremely large planar LEC that had been turned on to emit strongly then subsequently frozen. These concerted scanning and imaging studies depict a p–i–n junction structure in which the peak built‐in electric field lies at the interface between the intrinsic region and the p‐doped region. The corresponding 18 μm depletion width is very small compared to the 700 μm interelectrode spacing.

  相似文献   


18.
Today's micro‐ and nano‐fabrication is essentially two‐dimensional, with very limited possibilities of accessing the third dimension. The most viable way to mass‐fabricate functional structures at the nano‐scale, such as electronics or MEMS, with equal feature sizes in all directions, is by three‐dimensional self‐assembly. Up to now, three‐dimensional self‐assembly has mainly been restricted to crystals of polymer spheres. We report on two‐ and three‐dimensional self‐assembly of silicon cubes, levitated in a paramagnetic fluid. We demonstrate the benefits of templating and study the effect of a change in hydrophilicity of the cubes. These experiments bring us one step closer to three‐dimensional self‐assembly of anisotropic, semiconducting units, which is a crucial milestone in overcoming the scaling limits imposed by contemporary 2D microfabrication.

  相似文献   


19.
The commercial mass production of perovskite solar cells requires full compatibility with roll‐to‐roll processing with enhanced device stability. In line with this, the present work addresses following issues simultaneously from multiple fronts: (i) low temperature processed (140 °C) ZnO is used as electron transport layer (ETL) for fabricating the mixed organic cation based perovskite solar cells, (ii) the expensive hole transporting layer (HTL) spiro‐OMeTAD is replaced with F4TCNQ doped P3HT and (iii) the fabrication method does not incorporate the dopant TBP which is known to induce degradation processes in perovskite layer. All the devices under study were fabricated in ambient conditions. The F4TCNQ doped P3HT (HTL) based devices exhibits 14 times higher device stability compared to the conventional Li‐TFSI/TBP doped P3HT devices. The underlying mechanism behind the enhanced device lifetime in F4TCNQ doped P3HT (HTL) based devices was investigated via in‐depth electronic, ionic and polaronic characterization. The enhanced polaronic property in F4TCNQ doped P3HT HTL device ascertains its superior hole extraction and electron blocking capability; and consequently higher stability retained even after a month of ageing.

  相似文献   


20.
An innovative hybrid QD sensitized photovoltaic carbon nanotubes microyarn has been developed using thermally‐stable and highly conductive carbon nanotubes yarns (CNYs). These CNYs are highly inter‐aligned, ultrastrong and flexible with excellent electrical conductivity, mechanical integrity and catalytic properties. The CNYs are coated with a QD‐incorporated TiO2 microfilm and intertwined with a second set of CNYs as a counter electrode (CE). The maximum photon to current conversion efficiency (ηAM1.5) achieved with prolonged‐time stability was 5.93%. These cells are capable of efficiently harvesting incident photons regardless of direction and generating photocurrents with high efficiency and operational stability.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号