首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cu(In,Ga)Se2 (CIGS) solar cells without buffer layers have been demonstrated. Currently, CdS, Zn(O,S,OH), ZnS, or InS buffer layers are used in high efficiency CIGS solar cells to suppress interface recombination. One of the important parameters to reduce the recombination is the conduction band offset (CBO) between the buffer and CIGS layers. In this study, we have proposed the use of a novel transparent conductive oxide (TCO) which can control the CBO to reduce interface recombination and eliminate the buffer layers. The device simulation was used to verify the effect of CBO control theoretically. Then, the novel TCO material of ZnO1?xSx:Al prepared by co-sputtering of ZnO:Al2O3 and ZnS targets was fabricated to verify the CBO effect experimentally. The efficiency of a CIGS solar cell with a ZnO:Al/CIGS/Mo/soda-lime glass structure, i.e. buffer-less structure using a conventional TCO, was significantly low because of severe shunting. In contrast, the use of ZnO1-xSx:Al instead of ZnO:Al increased the shunt resistance of the CIGS solar cell, resulting in higher open-circuit voltage and efficiency. The result is the first proof of the concept of the buffer-less CIGS solar cells.  相似文献   

2.
Cu(In,Ga)Se2 (CIGS) solar cell junctions prepared by chemical-bath-deposited (CBD) ZnS(O,OH), Zn-Cd-S(O,OH), and CdS buffer layers are discussed in this paper. The device performances are compared by applying CBD ZnS(O,OH), CBD Zn-Cd-S(O,OH), and CBD CdS buffer layers on similar CIGS absorbers. The CN impurities in CBD ZnS(O,OH) are identified with Fourier transform infrared spectroscopy (FTIR) techniques. The impurities containing carbon-nitrogen bonds are most likely cyanamide (NCN2−) or thiocyanate (SCN), which resulted from the chemical reaction of thiourea and ammonia.  相似文献   

3.
CuGaSe2 (CGS) thin‐film solar cells were prepared with an in‐line co‐evaporation process and the established buffer combination CdS/i‐ZnO was replaced by ZnS/(Zn,Mg)O. We obtained functional CGS solar cells with a strong gain in the short‐circuit current density as compared to the CdS/i‐ZnO buffer reference cells. The enhanced current density is a result of improved transmission in the wavelength region between 330 nm and 550 nm of the ZnS/(Zn,Mg)O buffer combination as compared to CdS/i‐ZnO. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
In this work, a study of synthesis of thin films of Zn(O;OH)S and In(O;OH)S deposited by chemical bath deposition (CBD) is presented. The thin films of Zn(O;OH)S and In(O;OH)S were deposited from different chemical bath systems on absorber layers of CuInS2 (CIS), indium tin oxide substrates (ITO) and soda lime glass substrates (SL). The differences on the growth rate, optical, morphological and structural properties of the thin films Zn(O;OH)S and In(O;OH)S are studied. The Growth studies showed that thin films of Zn(O;OH)S and In(O;OH)S grown faster on CIS than on SL and ITO substrates. The optical and morphological studies showed that both thin films present high transmittance in visible electromagnetic spectrum and covered uniformly the surface of the substrate, furthermore it was observed that thin films of Zn(O;OH)S and In(O;OH)S were polycrystalline. Finally, the results suggest that thin films of Zn(O;OH)S and In(O;OH)S obtained in this work could be used as buffer layer to replace the thin films of CdS, which are conventionally used as buffer layer in chalcopyrite based solar cells.  相似文献   

5.
Non polar ZnO and (Zn, Co)O layers were successfully grown on (11̄02) sapphire (R-plane sapphire). The growth process was shown to directly influence the surface morphology as well as the strain state in (112̄0) ZnO (A-plane ZnO). The dominant defect lines seen in photoluminescence were due to basal stacking faults as demonstrated by means of selective photoluminescence and transmission electron microscopy. We present a novel method for growing high quality A-plane ZnO by inserting a (Zn, Co)O thin buffer layer, which strongly reduced the surface roughness. Finally (Zn, Mg)O/ZnO quantum well structures were grown on such a buffer layer. These quantum wells exhibited no intrinsic quantum confined Stark effect. PACS 81.05.Dz; 81.15.Hi; 78.67.Hc; 68.65.Fg  相似文献   

6.
Copper indium gallium selenide (CIGS) was deposited by metallic precursors sputtering and subsequently submitted to a selenization process. The upper CdS layers were deposited by chemical bath deposition (CBD) technique. The CdS/CIGS interfaces were investigated by Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). As checked by XPS analysis, the CIGS surface exhibited a hydroxide-terminated CdSe layer when treated with Cd Partial Electrolyte solution (Cd PE). Its thickness was roughly estimated to several nanometers. A 100 nm thick CdS layer was deposited onto CIGS surface. The TEM images revealed a clear and sharp interface between CdS and CIGS. XPS analysis showed a CIGS surface covered by a pinhole free and homogeneous CdS layer. XPS depth profile measurement of the CdS/CIGS interface did not evidence elemental inter-diffusion between the CIGS and CdS layers, in very good agreement with TEM observations.  相似文献   

7.
Superstrate-type Cu(In,Ga)Se2 (CIGS) thin film solar cells were fabricated using Zn1−xMgxO buffer layers. Due to the diffusion of Cd into CIGS during the growth of the CIGS layer, the conventional buffer material of CdS is not suitable. ZnO is a good candidate because of higher thermal tolerance but the conduction band offset (CBO) of ZnO/CIGS is not appropriate. In this study, the Zn1−xMgxO buffer layers were used to fulfill both the requirements. The superstrate-type solar cells with a soda-lime glass/In2O3:Sn/Zn1−xMgxO/CIGS/Au structure were fabricated with different band gap energies of the Zn1−xMgxO layer. The CIGS layers [Ga/(In + Ga)∼0.25] were deposited by co-evaporation method. The substrate temperature during the CIGS deposition of 450 °C did not cause the intermixing of the Zn1−xMgxO and CIGS layers. The conversion efficiency of the cell with Zn1−xMgxO was higher than that with ZnO due to the improvement of open-circuit voltage and shunt resistance. The results well corresponded to the behavior of the adjustment of CBO, demonstrating that the usefulness of the Zn1−xMgxO layer for the CBO control in the superstrate-type CIGS solar cells.  相似文献   

8.
A non-vacuum process for Cu(In,Ga)Se2 (CIGS) thin film solar cells from nanoparticle precursors was described in this work. CIGS nanoparticle precursors was prepared by a low temperature colloidal route by reacting the starting materials (CuI, InI3, GaI3 and Na2Se) in organic solvents, by which fine CIGS nanoparticles of about 15 nm in diameter were obtained. The nanoparticle precursors were then deposited onto Mo/glass substrate by the doctor blade technique. After heat treating the CIGS/Mo/glass layers in Se gas atmosphere, a complete solar cell structure was fabricated by depositing the other layers including CdS buffer layer, ZnO window layer and Al electrodes by conventional methods. The resultant solar cell showed a conversion efficiency of 0.5%.  相似文献   

9.
In this paper, we compare the performance of Cu(In,Ga)(S,Se)2 (CIGSSe) thin film solar cells with a CdS buffer layer grown by chemical bath deposition (CBD) with UV irradiation of 365 nm or 254 nm at an output power of 8 W. The effects of UV light irradiation on the CBD-CdS thin film deposition mechanism were investigated through chemical and electro-optical studies. UV light irradiation during the solution process promotes the hydrolysis of thiourea, thereby inhibiting the formation of the intermediate products being developed on the reaction pathways and decreasing the solution pH. Therefore, the efficiency of the CdS/CIGSSe solar cells was improved because of the increased elemental ratio of S/(S + O) in the CdS thin film. This very simple and effective approach can be used to control the S/O ratio of the CdS thin film fabricated by the CBD process without artificially controlling the process temperature, solution pH or concentration.  相似文献   

10.
Sn-based thin films as new buffer layer for Cd-free Cu(In,Ga)Se2 (CIGS) solar cells were developed. The Sn(O,S)2 films were formed on CIGS substrates by chemical bath deposition from an alkaline ammonia solution by reacting tin(IV) chloride with thiourea. Optimization of the growth process allowed the smooth and conformal coverage of the films on the CIGS substrates with a thickness of 20 nm that was a self-limited thickness in the chemical bath deposition process. XPS analysis revealed that the as-deposited films contained Sn–O, Sn–OH, and Sn–S bondings and the ratio of Sn–S bonding to Sn–O bonding was 0.3. The CIGS solar cell fabricated with a 20-nm thick Sn(O,S)2 buffer layer had the best efficiency of 11.5% without AR coating. The open circuit voltage, short circuit current, and fill factor were 0.55 V, 34.4 mA/cm2, and FF = 0.61, respectively. The open circuit voltage and fill factor were low compared to the conventional CIGS solar cell with a 50-nm thick CdS buffer due to too thin Sn(O,S)2 buffer layer.  相似文献   

11.
In this paper, we investigated the effect of rapid thermal annealing (RTA) on solar cell performance. An opto-electric conversion efficiency of 11.75% (Voc=0.64 V, Jsc = 25.88mA/cm2 , FF=72.08%) was obtained under AM 1.5G when the cell was annealed at 300℃ for 30s. The annealed solar cell showed an average absolute efficiency 1.5% higher than that of the as-deposited one. For the microstructure analysis and the physical phase confirmation, X-ray diffraction (XRD), Raman spectra, front surface reflection (FSR), internal quantum efficiency (IQE), and X-ray photoelectron spectroscopy (XPS) were respectively applied to distinguish the causes inducing the efficiency variation. All experimental results implied that the RTA eliminated recombination centers at the p-n junction, reduced the surface optical losses, enhanced the blue response of the CdS buffer layer, and improved the ohmic contact between Mo and Cu(In, Ga)Se2 (CIGS) layers. This leaded to the improved performance of CIGS solar cell.  相似文献   

12.
In this work, ZnO nanorod/Cu2O composite nanostructure solar cells were prepared using hydrothermal growth and electrodeposition. The CdS layer was added between ZnO and Cu2O to suppress carrier reverse recombination. Nondestructive interface deposition methods were employed to prepare CdS and Cu2O functional layers. The CdS layers were unconventionally deposited in non-alkaline solution, which can inhibit etching on the ZnO surface, and Cu2O layers were electrodeposited in ZnO-buffered alkaline solution which can also inhibit etching on the ZnO surface. Finally, the performance of solar cells was improved by adding a highly resistive CdS intermediate layer between ZnO and Cu2O layers. This work demonstrated the nondestructive interface approach of chemical solution deposition of functional layers on ZnO and possibilities for further improvements to the performance of Cu2O-based nanostructure solar cells with the addition of an intermediated layer.  相似文献   

13.
This paper presents a spectroscopic analysis of the interface between a CuIn1−xGaxS2 (CIGS2) absorber and a CdS buffer layer on stainless steel foil by Auger electron spectroscopy (AES), inverse photoemission spectroscopy (IPES) and photoelectron spectroscopy (PES) such as X-ray photoelectron spectroscopy (XPS), and ultraviolet photoelectron spectroscopy (UPS). By combining these spectroscopic techniques, detailed information about the electronic and chemical properties of the CIGS2 surface and the CdS/CIGS2 interface can be obtained. The gallium concentration in CIGS2 films was found to increase continuously towards the Mo back contact. XPS analysis showed the presence of KCO3 on the surface of CdS, deposited on etched and un-oxidized samples indicating diffusion of potassium. No potassium was observed on oxidized as well as samples having thicker CdS (50 nm) indicating the effectiveness of oxidation and chemical bath deposition (CBD) process in cleaning the sample surface effectively. In addition, investigation of the electronic level alignment at the interface has been carried out by combining PES and IPES. Conduction band offset of −0.45 (±0.15) eV and a valence band offset of −1.06 (±0.15) eV were measured. These unfavorable conditions limit efficiency of CIGS2 thin film solar cells.  相似文献   

14.
A facile synthesis route is presented to achieve dimension-tunable ZnO nanostructures by the design of zinc hydroxide precursors under the surfactant-free condition. From three types of zinc hydroxide precursors, namely, crystalline Zn(OH)(NO3)(H2O) nanobelts, amorphous zinc hydroxides microparticles and soluble Zn(OH)2-4\mathrm{Zn}(\mathrm{OH})^{2-}_{4} species, the porous ZnO nanosheets, ZnO nanoparticles and ZnO nanowires can be achieved, respectively. The porous ZnO nanosheets exhibit large polar surface area. Thermal analysis indicates that the crystalline Zn(OH)(NO3)(H2O) nanobelts were converted to the porous ZnO nanosheets by in situ lattice reconstruction, which was attributed to the unique fibrous structure of Zn(OH)(NO3)(H2O) nanobelts. The as-prepared dimension-tunable ZnO nanostructures have potential applications in solar cells, photocatalysis, novel chemical and biological sensors, etc.  相似文献   

15.
A combination of undoped ZnO and ZnO:Al is the most commonly used window layer stack for chalcopyrite solar cells. The high carrier density and thickness required to achieve a sufficiently low sheet resistance lead to optical absorption and cause losses in photocurrent, in particular in monolithically interconnected modules. Additionally, the band gap of the CdS buffer layer and of un‐doped ZnO limit the blue response. These losses could be avoided by using a transparent conductive oxide with high carrier mobility and wider band gap in combination with a buffer layer which also has a wide band gap. We propose a stack of Zn(O,S) and In2O3:H and report on our first results concerning its implementation. This stack is Cd‐free, highly transparent over a wide range, and can be deposited completely by sputtering which is an industrially proven dry process. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

16.
Zn(S,O) thin films fabricated on CIGS/Mo/glass substrates by using chemical bath deposition (CBD) in acidic and basic solutions were studied. The Zn(S,O) thin films prepared in acidic solution [A-Zn(S,O) thin film] showed better crystallinity and a more compact surface morphology with larger grains than those prepared in basic solution [B-Zn(S,O) thin film] did. From the analysis of the chemical bonding states, at the initial growth step, the concentration ratio of Zn–O/Zn–S bonds in A-Zn(S,O) thin films was found to be approximately zero, while that in B-Zn(S,O) thin films was approximately equal to 1. The elemental distribution according to depth, determined by secondary ion mass spectroscopy (SIMS), was shown to be uniform throughout both the A- and B-Zn(S,O) thin films. To reduce the number of Zn–O bonds in the B-Zn(S,O) thin films, the samples were post-annealed at up to 300 °C under vacuum, after which the concentration ratio of Zn–O/Zn–S bonds decreased by about 71% without any change in the crystallinity or surface morphology.  相似文献   

17.
范巍  曾雉 《物理学报》2016,65(6):68801-068801
采用第一性原理电子结构方法研究了四价过渡金属Ti, Zr和Hf替代Cu2ZnSnS4(CZTS)中Sn原子以及Se替代S原子所得到的四元硫族化合物的电子结构、光学性质和晶体结构的稳定性. 实验上用Se替代CZTS中部分S得到的Cu2ZnSnS4-xSex(CZTSSe)作为光吸收材料, 可以进一步提高光伏效率. 我们计算表明用Se替代S后, CZTSe的价带顶明显下移, 并接近Cu(In, Ga) Se2 (CIGS)价带顶位置. 与CZTSe的电子结构特征一样, Cu2Zn(Ti, Zr, Hf)S4四元硫化物的价带顶与母体材料CZTS相比也向低能移动, 并接近CIGS价带顶位置. 由于高光伏效率要求窗口材料ZnO、缓冲层材料和光吸收材料的价带顶和带隙满足一定的渐进的变化关系, 因此可以预见用Cu2Zn(Ti, Zr, Hf)S4作光吸收材料可以有效地提高甚至接近CIGS的光伏效率. 通过计算弹性常数和声子谱, 以及有限温度下第一性原理分子动力学模拟, 发现Cu2Zn(Ti, Zr, Hf)S4的结构稳定性与CZTS相近. 进一步计算Cu2Zn(Ti, Zr, Hf)S4与不同缓冲层间和窗口材料与缓冲层间的反射系数, 并讨论了ZnSe, In2S3, ZnS作为缓冲层材料和TiO2作为窗口材料对光伏效率可能的影响.  相似文献   

18.
路忠林  邹文琴  徐明祥  张凤鸣 《中国物理 B》2010,19(5):56101-056101
This paper reports that the high-quality Co-doped ZnO single crystalline films have been grown on $a$-plane sapphire substrates by using molecular-beam epitaxy. The as-grown films show high resistivity and non-ferromagnetism at room temperature, while they become good conductive and ferromagnetic after annealing in the reducing atmosphere either in the presence or absence of Zn vapour. The x-ray absorption studies indicate that all Co ions in these samples actually substituted into the ZnO lattice without formatting any detectable secondary phase. Compared with weak ferromagnetism (0.16~$\mu _{\rm B}$/Co$^{2 + })$ in the Zn6110M, 7550P, 7280E, 7870Dhttp://cpb.iphy.ac.cn/CN/10.1088/1674-1056/19/5/056101https://cpb.iphy.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=111756Co-doped ZnO, diluted magnetic semiconductors, x-ray absorption fine structure, single crystalline thin filmsProject partially supported by National Science Foundation of China (Grant No.~10804017), National Science Foundation of Jiangsu Province of China (Grant No.~BK2007118), Research Fund for the Doctoral Program of Higher Education of China (Grant No.~20070286037), Cyanine-Project Foundation of Jiangsu Province of China (Grant No.~1107020060), Foundation for Climax Talents Plan in Six-Big Fields of Jiangsu Province of China (Grant No.~1107020070) and New Century Excellent Talents in University (NCET-05-0452).This paper reports that the high-quality Co-doped ZnO single crystalline films have been grown on $a$-plane sapphire substrates by using molecular-beam epitaxy. The as-grown films show high resistivity and non-ferromagnetism at room temperature, while they become good conductive and ferromagnetic after annealing in the reducing atmosphere either in the presence or absence of Zn vapour. The x-ray absorption studies indicate that all Co ions in these samples actually substituted into the ZnO lattice without formatting any detectable secondary phase. Compared with weak ferromagnetism (0.16~$\mu _{\rm B}$/Co$^{2 + })$ in the Zn$_{0.95}$Co$_{0.05}$O single crystalline film with reducing annealing in the absence of Zn vapour, the films annealed in the reducing atmosphere with Zn vapour are found to have much stronger ferromagnetism (0.65~$\mu _{\rm B}$/Co$^{2 + })$ at room temperature. This experimental studies clearly indicate that Zn interstitials are more effective than oxygen vacancies to activate the high-temperature ferromagnetism in Co-doped ZnO films, and the corresponding ferromagnetic mechanism is discussed.Co-doped;ZnO;diluted;magnetic;semiconductors;x-ray;absorption;fine;structure;single;crystalline;thin;filmsThis paper reports that the high-quality Co-doped ZnO single crystalline films have been grown on a-plane sapphire substrates by using molecular-beam epitaxy.The as-grown films show high resistivity and non-ferromagnetism at room temperature,while they become more conductive and ferromagnetic after annealing in the reducing atmosphere either in the presence or absence of Zn vapour.The x-ray absorption studies indicate that all Co ions in these samples actually substituted into the ZnO lattice without formatting any detectable secondary phase.Compared with weak ferromagnetism(0.16 μB/Co2+) in the Zn0.95Co0.05O single crystalline film with reducing annealing in the absence of Zn vapour,the films annealed in the reducing atmosphere with Zn vapour are found to have much stronger ferromagnetism(0.65 μB/Co2+) at room temperature.This experimental studies clearly indicate that Zn interstitials are more effective than oxygen vacancies to activate the high-temperature ferromagnetism in Co-doped ZnO films,and the corresponding ferromagnetic mechanism is discussed.  相似文献   

19.
《Current Applied Physics》2015,15(3):383-388
(Zn,Mg)O (ZMO) buffer layer has attracted attention for having the potential to control the conduction band offset of buffer layer and large band-gap (Eg) Cu2ZnSn(S,Se)4 (CZTSSe) absorber interface, where the ZMO layer is deposited by the sputtering. However, the solar cell efficiency is decreased with the ZMO layer as compared with the CdS layer. The decrease in conversion efficiency is attributed to the sputtering damage on the absorber and high light reflection from the surfaces of CZTSSe solar cells. To completely suppress the damage, a CdS layer with very thin thickness of 20 nm is inserted between the ZMO layer and the CZTSSe layer. In addition, MgF2 layers are deposited on CZTSSe solar cells as anti-reflection coating. Ultimately, the solar cell with multi-buffer layer of ZMO/thin-CdS is almost same level as that with the CdS layer. Therefore, the multi-buffer layer can be an appropriate buffer layer of the large-Eg CZTSSe layer.  相似文献   

20.
Layer by layer growth of ZnO epilayers on (0001) Al2O3 substrates is achieved by radical-source molecular beam epitaxy. A thin MgO buffer, followed by a low-temperature ZnO buffer was used in order to accommodate the lattice mismatch between ZnO and sapphire. Reflection high-energy electron diffraction intensity was employed for the optimization of the ZnO growth. The surface morphology of the samples was studied with atomic force microscopy. Investigation of the nature of the influence of the MgO buffer layer on the formation of ZnO on sapphire substrate was carried out using Transmission Electron Microscopy. For the first time it was shown that a thin spinel (magnesium aluminum oxide) layer is formed on the interface of the sapphire substrate and MgO buffer layer leading to the crystalline quality improvement of the ZnO main layer. X-Ray diffractometry measurements of the obtained ZnO layers show excellent quality of the single crystalline ZnO heteroepitaxially grown on sapphire. The crystalline quality of the ZnO layers is even better than that of our previously reported layers grown employing hydrogen peroxide as an oxidant. The full width at half maximum of the XRD (0002) rocking curve is as low as 25 arc s. The influence of growth parameters (Zn/O flux ratio, temperature, etc.) on the structural properties as well as on the surface morphology of the zinc oxide layers on sapphire is investigated and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号