首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 535 毫秒
1.
The photochemical reaction of Ru(CO)(3)(dppe) and Fe(CO)(3)(dppe)(dppe = Ph(2)PCH(2)CH(2)PPh(2)) with parahydrogen has been studied by in situ-photochemistry resulting in NMR spectra of Ru(CO)(2)(dppe)(H)(2) that show significant enhancement of the hydride resonances while normal signals are seen in Fe(CO)(2)(dppe)(H)(2). This effect is associated with a singlet electronic state for the key intermediate Ru(CO)(2)(dppe) while Fe(CO)(2)(dppe) is a triplet. DFT calculations reveal electronic ground states consistent with this picture. The fluxionality of Ru(CO)(2)(dppe)(H)(2) and Fe(CO)(2)(dppe)(H)(2) has been examined by NMR spectroscopy and rationalised by theoretical methods which show that two pathways for ligand exchange exist. In the first, the phosphorus and carbonyl centres interchange positions while the two hydride ligands are unaffected. A second pathway involving interchange of all three ligand sets was found at slightly higher energy. The H-H distances in the transition states are consistent with metal-bonded dihydrogen ligands. However, no local minimum (intermediate) was found along the rearrangement pathways.  相似文献   

2.
The tetrahydroborate ligand in [Ru(eta(2)-BH(4))(CO)H(PMe(2)Ph)(2)], 1, allows conversion under very mild conditions to [Ru(CO)(Et)H(PMe(2)Ph)(3)], 7, by way of [Ru(eta(2)-BH(4))(CO)Et(PMe(2)Ph)(2)], 4. Deprotection of the hydride ligand in 7(by BH(3) abstraction) occurs only in the final step, thus preventing premature ethane elimination. A deviation from the route from 4 to 7 yields [Ru(eta(2)-BH(4))(COEt)(PMe(2)Ph)(3)], 6, but does not prevent ultimate conversion to 7. Modification of the treatment of 4 yields an isomer of 7, 10. Both isomers eliminate ethane at temperatures above 250 K: the immediate product of elimination, thought to be [Ru(CO)(PMe(2)Ph)(3)], 11, can be trapped as [Ru(CO)(PMe(2)Ph)(4)], 12, [Ru(CO)H(2)(PMe(2)Ph)(3)], 3a, or [Ru(CO)(C[triple bond]CCMe(3))H(PMe(2)Ph)(3)], 13. The elimination is a simple first-order process with negative DeltaS(++) and (for 7) a normal kinetic isotope effect (k(H)/k(D)= 2.5 at 287.9 K). These results, coupled with labelling studies, rule out a rapid equilibrium with a [sigma]-ethane intermediate prior to ethane loss.  相似文献   

3.
The highly electrophilic, coordinatively unsaturated, 16-electron [Ru(P(OH)3)(dppe)2][OTf]2 (dppe = Ph2PCH2CH2PPh2) complex 1 activates the H-H, the Si-H, and the B-H bonds, in H2(g), EtMe2SiH and Et3SiH, and H3B.L (L = PMe3, PPh3), respectively, in a heterolytic fashion. The heterolysis of H2 involves an eta2-H2 complex (observable at low temperatures), whereas the computations indicate that those of the Si-H and the B-H bonds proceed through unobserved eta1-species. The common ruthenium-containing product in these reactions is trans-[Ru(H)(P(OH)3)(dppe)2][OTf], 2. The [Ru(P(OH)3)(dppe)2][OTf]2 complex is unique with regard to activating the H-H, the Si-H, and the B-H bonds in a heterolytic manner. These reactions and the heterolytic activation of the C-H bond in methane by the model complex [Ru(POH)3)(H2PCH2CH2PH2)2][Cl][OTf], 4, have been investigated using computational methods as well, at the B3LYP/LANL2DZ level. While the model complex activates the H-H, the Si-H, and the B-H bonds in H2, SiH4, and H3B.L (L = PMe3, PPh3), respectively, with a low barrier, activation of the C-H bond in CH4 involves a transition state of 57.5 kcal/mol high in energy. The inability of the ruthenium complex to activate CH4 is due to the undue stretching of the C-H bond needed at the transition state, in comparison to the other substrates.  相似文献   

4.
Complex 3, [Ru(eta2-BH4)(CO)(Et)L2] (L = PMe2Ph) can be converted by nucleophiles L' {a, PMe2Ph; b, P(OMe)3; c, Me3CNC; d, CO} to alkyl and acyl complexes [Ru(eta1-BH4)(CO)(Et)L2L'] (4a), [Ru(eta2-BH4)(COEt)L2L'] (5a-d), and [Ru(eta1-BH4)(COEt)L2L'2] (7d and isomers 7c and 10c). Deprotection can then be achieved under conditions mild enough to allow study of the resulting alkyl hydride complexes [Ru(CO)(Et)HL2L'] (1a, 1b) and acyl hydride complexes [Ru(COEt)HL2L'2] (8c, 8d) prior to elimination of ethane and propanal respectively, with formation of ruthenium(0) complexes [Ru(CO)L2L'2] (6a, 6b, 6d). With Me3CNC, however, the final product is (depending on the solvent used) [Ru(CNCMe3)2{C(H)NCMe3}(COEt)L2] (9c) or [Ru(CNCMe3)3(COEt)L2]+ (11c). Successive treatment of [Ru(eta2-BH4)(CO)HL2], , with ethene and then CO yields propanal, but turning this into a catalytic cycle is hindered by the greater readiness of to yield propanal non-catalytically (reacting with CO) than catalytically (reacting with H2).  相似文献   

5.
Thermolysis of [Ru(AsPh3)3(CO)H2] with the N-aryl heterocyclic carbenes (NHCs) IMes (1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene), IPr (1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) or the adduct SIPr.(C6F5)H (SIPr=1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazol-2-ylidene), followed by addition of CH2Cl2, affords the coordinatively unsaturated ruthenium hydride chloride complexes [Ru(NHC)2(CO)HCl] (NHC=IMes , IPr , SIPr ). These react with CO at room temperature to yield the corresponding 18-electron dicarbonyl complexes . Reduction of and [Ru(IMes)(PPh3)(CO)HCl] () with NaBH4 yields the isolable borohydride complexes [Ru(NHC)(L)(CO)H(eta2-BH4)] (, L=NHC, PPh3). Both the bis-IMes complex and the IMes-PPh3 species react with CO at low temperature to give the eta1-borohydride species [Ru(IMes)(L)(CO)2H(eta1-BH4)] (L=IMes , PPh3), which can be spectroscopically characterised. Upon warming to room temperature, further reaction with CO takes place to afford initially [Ru(IMes)(L)(CO)2H2] (L=IMes, L=PPh3) and, ultimately, [Ru(IMes)(L)(CO)3] (L=IMes , L=PPh3). Both and lose BH3 on addition of PMe2Ph to give [Ru(IMes)(L)(L')(CO)H2](L=L'=PMe2Ph; L=PPh3, L'=PMe2Ph). Compounds and have been tested as catalysts for the hydrogenation of aromatic ketones in the presence of (i)PrOH and H2. For the reduction of acetophenone, catalytic activity varies with the NHC present, decreasing in the order IPr>IMes>SIMes.  相似文献   

6.
The clusters Ru(3)(CO)(10)L(2), where L = PMe(2)Ph or PPh(3), are shown by NMR spectroscopy to exist in solution in at least three isomeric forms, one with both phosphines in the equatorial plane on the same ruthenium center and the others with phosphines in the equatorial plane on different ruthenium centers. Isomer interconversion for Ru(3)(CO)(10)(PMe(2)Ph)(2) is highly solvent dependent, with DeltaH decreasing and DeltaS becoming more negative as the polarity of the solvent increases. The stabilities of the isomers and their rates of interconversion depend on the phosphine ligand. A mechanism that accounts for isomer interchange involving Ru-Ru bond heterolysis is suggested. The products of the reaction of Ru(3)(CO)(10)L(2) with hydrogen have been monitored by NMR spectroscopy via normal and para hydrogen-enhanced methods. Two hydrogen addition products are observed with each containing one bridging and one terminal hydride ligand. EXSY spectroscopy reveals that both intra- and interisomer hydride exchange occurs on the NMR time scale. On the basis of the evidence available, mechanisms for hydride interchange involving Ru-Ru bond heterolysis and CO loss are proposed.  相似文献   

7.
The synthesis, characterisation and thermal and photochemical reactivity of Ru(CO)2(PPh3)(dppe) 1 towards hydrogen are described. Compound proved to exist in both fac (major) and mer forms in solution. Under thermal conditions, PPh3 is lost from 1 in the major reaction pathway and the known complex Ru(CO)2(dppe)(H)2 2 is formed. Photochemically, CO loss is the dominant process, leading to the alternative dihydride Ru(CO)(PPh3)(dppe)(H)2 3. The major isomer of 3, viz. 3a, contains hydride ligands that are trans to CO and trans to one of the phosphorus atoms of the dppe ligand but a second isomer, 3b, where both hydride ligands are trans to distinct phosphines, is also formed. On the NMR timescale, no interconversion of 3a and 3b was observed, although hydride site interchange is evident with activation parameters of DeltaH(double dagger) = 95 +/- 6 kJ mol(-1) and DeltaS(double dagger) = 26 +/- 17 J K(-1) mol(-1). Density functional theory confirms that the observed species are the most stable isomeric forms, and suggests that hydride exchange occurs via a transition state featuring an eta2-coordinated H2 unit.  相似文献   

8.
The reactivity of the cluster family [Ru(3)(CO)(12-x)(L)(x)] (in which L=PMe(3), PMe(2)Ph, PPh(3) and PCy(3), x=1-3) towards hydrogen is described. When x=2, three isomers of [Ru(3)(H)(mu-H)(CO)(9)(L)(2)] are formed, which differ in the arrangement of their equatorial phosphines. Kinetic studies reveal the presence of intra- and inter-isomer exchange processes with activation parameters and solvent effects indicating the involvement of ruthenium-ruthenium bond heterolysis and CO loss, respectively. When x=3, reaction with H(2) proceeds to form identical products to those found with x=2, while when x=1 a single isomer of [Ru(3)(H)(mu-H)(CO)(10)(L)] is formed. Species [Ru(3)(H)(mu-H)(CO)(9)(L)(2)] have been shown to play a kinetically significant role in the hydrogenation of an alkyne substrate through initial CO loss, with rates of H(2) transfer being explicitly determined for each isomer. A less significant secondary reaction involving loss of L yields a detectable product that contains both a pendant vinyl unit and a bridging hydride ligand. Competing pathways that involve fragmentation to form [Ru(H)(2)(CO)(2)(L)(alkyne)] are also observed and shown to be favoured by nonpolar solvents. Kinetic data reveal that catalysis based on [Ru(3)(CO)(10)(PPh(3))(2)] is the most efficient although [Ru(3)(H)(mu-H)(CO)(9)(PMe(3))(2)] corresponds to the most active of the detected intermediates.  相似文献   

9.
The octahedral Ru(II) amine complexes [TpRu(L)(L')(NH(2)R)][OTf] (L = L' = PMe(3), P(OMe)(3) or L = CO and L' = PPh(3); R = H or (t)Bu) have been synthesized and characterized. Deprotonation of the amine complexes [TpRu(L)(L')(NH(3))][OTf] or [TpRu(PMe(3))(2)(NH(2)(t)Bu)][OTf] yields the Ru(II) amido complexes TpRu(L)(L')(NH(2)) and TpRu(PMe(3))(2)(NH(t)Bu). Reactions of the parent amido complexes or TpRu(PMe(3))(2)(NH(t)Bu) with phenylacetylene at room temperature result in immediate deprotonation to form ruthenium-amine/phenylacetylide ion pairs, and heating a benzene solution of the [TpRu(PMe(3))(2)(NH(2)(t)Bu)][PhC(2)] ion pair results in the formation of the Ru(II) phenylacetylide complex TpRu(PMe(3))(2)(C[triple bond]CPh) in >90% yield. The observation that [TpRu(PMe(3))(2)(NH(2)(t)Bu)][PhC(2)] converts to the Ru(II) acetylide with good yield while heating the ion pairs [TpRu(L)(L')(NH(3))][PhC(2)] yields multiple products is attributed to reluctant dissociation of ammonia compared with the (t)butylamine ligand (i.e., different rates for acetylide/amine exchange). These results are consistent with ligand exchange reactions of Ru(II) amine complexes [TpRu(PMe(3))(2)(NH(2)R)][OTf] (R = H or (t)Bu) with acetonitrile. The previously reported phenyl amido complexes TpRuL(2)(NHPh) [L = PMe(3) or P(OMe)(3)] react with 10 equiv of phenylacetylene at elevated temperature to produce Ru(II) acetylide complexes TpRuL(2)(C[triple bond]CPh) in quantitative yields. Kinetic studies indicate that the reaction of TpRu(PMe(3))(2)(NHPh) with phenylacetylene occurs via a pathway that involves TpRu(PMe(3))(2)(OTf) or [TpRu(PMe(3))(2)(NH(2)Ph)][OTf] as catalyst. Reactions of 1,4-cyclohexadiene with the Ru(II) amido complexes TpRu(L)(L')(NH(2)) (L = L' = PMe(3) or L = CO and L' = PPh(3)) or TpRu(PMe(3))(2)(NH(t)Bu) at elevated temperatures result in the formation of benzene and Ru hydride complexes. TpRu(PMe(3))(2)(H), [Tp(PMe(3))(2)Ru[double bond]C[double bond]C(H)Ph][OTf], [Tp(PMe(3))(2)Ru=C(CH(2)Ph)[N(H)Ph]][OTf], and [TpRu(PMe(3))(3)][OTf] have been independently prepared and characterized. Results from solid-state X-ray diffraction studies of the complexes [TpRu(CO)(PPh(3))(NH(3))][OTf], [TpRu(PMe(3))(2)(NH(3))][OTf], and TpRu(CO)(PPh(3))(C[triple bond]CPh) are reported.  相似文献   

10.
Complexes of the type TpRu(L)(NCMe)R [L = CO or PMe3; R = Ph or Me; Tp = hydridotris(pyrazolyl)borate] initiate C-H activation of benzene. Kinetic studies, isotopic labeling, and other experimental evidence suggest that the mechanism of benzene C-H activation involves reversible dissociation of acetonitrile, reversible benzene coordination, and rate-determining C-H activation of coordinated benzene. TpRu(PMe3)(NCMe)Ph initiates C-D activation of C6D6 at rates that are approximately 2-3 times more rapid than that for TpRu(CO)(NCMe)Ph (depending on substrate concentration); however, the catalytic hydrophenylation of ethylene using TpRu(PMe3)(NCMe)Ph is substantially less efficient than catalysis with TpRu(CO)(NCMe)Ph. For TpRu(PMe3)(NCMe)Ph, C-H activation of ethylene, to ultimately produce TpRu(PMe3)(eta3-C4H7), is found to kinetically compete with catalytic ethylene hydrophenylation. In THF solutions containing ethylene, TpRu(PMe3)(NCMe)Ph and TpRu(CO)(NCMe)Ph separately convert to TpRu(L)(eta3-C4H7) (L = PMe3 or CO, respectively) via initial Ru-mediated ethylene C-H activation. Heating mesitylene solutions of TpRu(L)(eta3-C4H7) under ethylene pressure results in the catalytic production of butenes (i.e., ethylene hydrovinylation) and hexenes.  相似文献   

11.
[Pt(CSe3)(PR3)2] (PR3= PMe3, PMe2Ph, PPh3, P(p-tol)3, 1/2 dppp, 1/2 dppf) were all obtained by the reaction of the appropriate metal halide containing complex with carbon diselenide in liquid ammonia. Similar reaction with [Pt(Cl)2(dppe)] gave a mixture of triselenocarbonate and perselenocarbonate complexes. [{Pt(mu-CSe3)(PEt3)}4] was formed when the analogous procedure was carried out using [Pt(Cl)2(PEt3)2]. Further reaction of [Pt(CSe3)(PMe2Ph)2] with [M(CO)6] (M = Cr, W, Mo) yielded bimetallic species of the type [Pt(PMe2Ph)2(CSe3)M(CO)5] (M = Cr, W, Mo). The dimeric triselenocarbonate complexes [M{(CSe3)(eta5-C5Me5)}2] (M = Rh, Ir) and [{M(CSe3)(eta6-p-MeC6H4(i)Pr)}2] (M = Ru, Os) have been synthesised from the appropriate transition metal dimer starting material. The triselenocarbonate ligand is Se,Se' bidentate in the monomeric complexes. In the tetrameric structure the exocyclic selenium atoms link the four platinum centres together.  相似文献   

12.
A series of new dicationic dihydrogen complexes of ruthenium of the type cis-[(dppm)(2)Ru(eta(2)-H(2))(L)][BF(4)](2) (dppm = Ph(2)PCH(2)PPh(2); L = P(OMe)(3), P(OEt)(3), PF(O(i)Pr)(2)) have been prepared by protonating the precursor hydride complexes cis-[(dppm)(2)Ru(H)(L)][BF(4)] (L = P(OMe)(3), P(OEt)(3), P(O(i)Pr)(3)) using HBF(4).Et(2)O. The cis-[(dppm)(2)Ru(H)(L)][BF(4)] complexes were obtained from the trans hydrides via an isomerization reaction that is acid-accelerated. This isomerization reaction gives mixtures of cis and trans hydride complexes, the ratios of which depend on the cone angles of the phosphite ligands: the greater the cone angle, the greater is the amount of the cis isomer. The eta(2)-H(2) ligand in the dihydrogen complexes is labile, and the loss of H(2) was found to be reversible. The protonation reactions of the starting hydrides with trans PMe(3) or PMe(2)Ph yield mixtures of the cis and the trans hydride complexes; further addition of the acid, however, give trans-[(dppm)(2)Ru(BF(4))Cl]. The roles of the bite angles of the dppm ligand as well as the steric and the electronic properties of the monodentate phosphorus ligands in this series of complexes are discussed. X-ray crystal structures of trans-[(dppm)(2)Ru(H)(P(OMe)(3))][BF(4)], cis-[(dppm)(2)Ru(H)(P(OMe)(3))][BF(4)], and cis-[(dppm)(2)Ru(H)(P(O(i)Pr)(3))][BF(4)] complexes have been determined.  相似文献   

13.
Treatment of cis-[W(N2)2(PMe2Ph)4] (5) with an equilibrium mixture of trans-[RuCl(eta 2-H2)(dppp)2]X (3) with pKa = 4.4 and [RuCl(dppp)2]X (4) [X = PF6, BF4, or OTf; dppp = 1,3-bis(diphenylphosphino)propane] containing 10 equiv of the Ru atom based on tungsten in benzene-dichloroethane at 55 degrees C for 24 h under 1 atm of H2 gave NH3 in 45-55% total yields based on tungsten, together with the formation of trans-[RuHCl(dppp)2] (6). Free NH3 in 9-16% yields was observed in the reaction mixture, and further NH3 in 36-45% yields was released after base distillation. Detailed studies on the reaction of 5 with numerous Ru(eta 2-H2) complexes showed that the yield of NH3 produced critically depended upon the pKa value of the employed Ru(eta 2-H2) complexes. When 5 was treated with 10 equiv of trans-[RuCl(eta 2-H2)(dppe)2]X (8) with pKa = 6.0 [X = PF6, BF4, or OTf; dppe = 1,2-bis(diphenylphosphino)ethane] under 1 atm of H2, NH3 was formed in higher yields (up to 79% total yield) compared with the reaction with an equilibrium mixture of 3 and 4. If the pKa value of a Ru(eta 2-H2) complex was increased up to about 10, the yield of NH3 was remarkably decreased. In these reactions, heterolytic cleavage of H2 seems to occur at the Ru center via nucleophilic attack of the coordinated N2 on the coordinated H2 where a proton (H+) is used for the protonation of the coordinated N2 and a hydride (H-) remains at the Ru atom. Treatment of 5, trans-[W(N2)2(PMePh2)4] (14), or trans-[M(N2)2(dppe)2] [M = Mo (1), W (2)] with Ru(eta 2-H2) complexes at room temperature led to isolation of intermediate hydrazido(2-) complexes such as trans-[W(OTf)(NNH2)(PMe2Ph)4]OTf (19), trans-[W(OTf)(NNH2)(PMePh2)4]OTf (20), and trans-[WX(NNH2)(dppe)2]+ [X = OTf (15), F (16)]. The molecular structure of 19 was determined by X-ray analysis. Further ruthenium-assisted protonation of hydrazido(2-) intermediates such as 19 with H2 at 55 degrees C was considered to result in the formation of NH3, concurrent with the generation of W(VI) species. All of the electrons required for the reduction of N2 are provided by the zerovalent tungsten.  相似文献   

14.
Reaction of [2,3,4,5-Ph(4)(eta(5)-C(4)COH)Ru(CO)(2)H] (2) with different imines afforded ruthenium amine complexes at low temperatures. At higher temperatures in the presence of 2, the complexes decomposed to give [Ru(2)(CO)(4)(mu-H)(C(4)Ph(4)COHOCC(4)Ph(4))] (1) and free amine. Electron-rich imines gave ruthenium amine complexes with 2 at a lower temperature than did electron-deficient imines. The negligible deuterium isotope effect (k(RuHOH)/k(RuDOD) = 1.05) observed in the reaction of 2 with N-phenyl[1-(4-methoxyphenyl)ethylidene]amine (12) shows that neither hydride (RuH) nor proton (OH) is transferred to the imine in the rate-determining step. In the dehydrogenation of N-phenyl-1-phenylethylamine (4) to the corresponding imine 8 by [2,3,4,5-Ph(4)(eta(4)-C(4)CO)Ru(CO)(2)] (A), the kinetic isotope effects observed support a stepwise hydrogen transfer where the isotope effect for C-H cleavage (k(CHNH)/k(CDNH) = 3.24) is equal to the combined (C-H, N-H) isotope effect (k(CHNH)/k(CDND) = 3.26). Hydrogenation of N-methyl(1-phenylethylidene)amine (14) by 2 in the presence of the external amine trap N-methyl-1-(4-methoxyphenyl)ethylamine (16) afforded 90-100% of complex [2,3,4,5-Ph(4)(eta(4)-C(4)CO)]Ru(CO)(2)NH(CH(3))(CHPhCH(3)) (15), which is the complex between ruthenium and the amine newly generated from the imine. At -80 degrees C the reaction of hydride 2 with 4-BnNH-C(6)H(9)=NPh (18), with an internal amine trap, only afforded [2,3,4,5-Ph(4)(eta(4)-C(4)CO)](CO)(2)RuNH(Ph)(C(6)H(10)-4-NHBn) (19), where the ruthenium binds to the amine originating from the imine, showing that neither complex A nor the diamine is formed. Above -8 degrees C complex 19 rearranged to the thermodynamically more stable [Ph(4)(eta(4)-C(4)CO)](CO)(2)RuNH(Bn)(C(6)H(10)-4-NHPh) (20). These results are consistent with an inner sphere mechanism in which the substrate coordinates to ruthenium prior to hydrogen transfer and are difficult to explain with the outer sphere pathway previously proposed.  相似文献   

15.
Adams RD  Kwon OS  Smith MD 《Inorganic chemistry》2002,41(24):6281-6290
The reaction of Mn(2)(CO)(9)(NCMe) with thiirane yielded the sulfidomanganese carbonyl compounds Mn(2)(CO)(7)(mu-S(2)), 2, Mn(4)(CO)(15)(mu(3)-S(2))(mu(4)-S(2)), 3, and Mn(4)(CO)(14)(NCMe)(mu(3)-S(2))(mu(4)-S(2)), 4, by transfer of sulfur from the thiirane to the manganese complex. Compound 3 was obtained in better yield from the reaction of 2 with CO, and compound 4 is obtained from the reaction of 2 with NCMe. The reaction of 2 with PMe(2)Ph yielded the tetramanganese disulfide Mn(4)(CO)(15)(PMe(2)Ph)(2)(mu(3)-S)(2), 5, and S=PMe(2)Ph. The reaction of 5 with PMe(2)Ph yielded Mn(4)(CO)(14)(PMe(2)Ph)(3)(mu(3)-S)(2), 6, by ligand substitution. The reaction of 2 with AsMe(2)Ph yielded the new complexes Mn(4)(CO)(14)(AsMe(2)Ph)(2)(mu(3)-S(2))(2), 7, Mn(4)(CO)(14)(AsMe(2)Ph)(mu(3)-S(2))(mu(4)-S(2)), 8, Mn(6)(CO)(20)(AsMe(2)Ph)(2)(mu(4)-S(2))(3), 9, and Mn(2)(CO)(6)(AsMe(2)Ph)(mu-S(2)), 10. Reaction of 2 with AsPh(3) yielded the monosubstitution derivative Mn(2)(CO)(6)(AsPh(3))(mu-S(2)), 11. Reaction of 7 with PMe(2)Ph yielded Mn(4)(CO)(15)(AsMe(2)Ph)(2)(mu(3)-S)(2), 12. The phosphine analogue of 7, Mn(4)(CO)(14)(PMe(2)Ph)(2)(mu(3)-S(2))(2), 13, was prepared from the reaction of Mn(2)(CO)(9)(PMe(2)Ph) with Me(3)NO and thiirane. Compounds 2-9 and 11-13 were characterized by single-crystal X-ray diffraction. Compound 2 contains a disulfido ligand that bridges two Mn(CO)(3) groups that are joined by a Mn-Mn single bond, 2.6745(5) A in length. A carbonyl ligand bridges the Mn-Mn bond. Compounds 3 and 4 contain four manganese atoms with one triply bridging and one quadruply bridging disulfido ligand. Compounds 5 and 6 contain four manganese atoms with two triply bridging sulfido ligands. Compound 9 contains three quadruply bridging disulfido ligands imbedded in a cluster of six manganese atoms.  相似文献   

16.
A series of carbenerhodium(I) complexes of the general composition [(eta5-C5H5)Rh(=CRR')(L)] (2a-2i) with R = R'= aryl and L = SbiPr3 or PR3 has been prepared from the square-planar precursors trans-[RhCl(=CRR')(L)2] and NaC5H5 in excellent yields. Reaction of the triisopropylsibane derivative 2a. which contains a rather labile Rh-Sb bond, with CO, PMe3, and CNR (R = Me, CH2Ph, tBu) leads to the displacement of the SbiPr3 ligand and affords the substitution products [(eta5-C5H5)Rh(=CPh2)(L)] (3-7). In contrast, treatment of the triisopropylphosphane compound 2c with CO and CNtBu leads to the cleavage of the Rh=CPh2 bond and gives besides [(eta5-C5H5)Rh(PiPr3)(L)] (10, 12) by metal-assisted C-C coupling diphenylketene Ph2C=C=O (11) or the corresponding imine Ph2C=C=NtBu (13). While the reaction of 2a, c with C2H4 yields [(eta5-C5H5)Rh(C2H4)(L)] (14, 15) and the trisubstituted olefin Ph2C=CHCH3 (16), treatment of 2a, c with RN3 leads to the cleavage of both the Rh-EiPr3 and Rh=CPh2 bonds and gives the chelate complexes [(eta5-C5H5)Rh(kappa2-RNNNNR)] (19, 20). The substitution products 3 (L=CO) and 4 (L= PMe3) react with an equimolar amount of sulfur or selenium by addition of the chalcogen to the Rh=CPh2 bond to generate the complexes [(eta5-C5H5)Rh(kappa2-ECPh2)(L)] (21-24) with thio- or selenobenzophenone as ligand. Similarly, treatment of 3 with CuCl affords the unusual 1:2 adduct [(eta5-C5H5)(CO)Rh(mu-CPh2)(CuCl)2] (25), which reacts with NaC5H5 to form [(eta5-C5H5)(CO)Rh(muCPh2)Cu(eta5-C5H5)] (26). The molecular structures of 3 and 22 have been determined by X-ray crystallography.  相似文献   

17.
The non-heteroatom-substituted manganese alkynyl carbene complexes (eta5-MeC5H4)(CO)2Mn=C(R)C[triple bond]CR'(3; 3a: R = R'= Ph, 3b: R = Ph, R'= Tol, 3c: R = Tol, R'= Ph) have been synthesised in high yields upon treatment of the corresponding carbyne complexes [eta5-MeC5H4)(CO)2Mn[triple bond]CR][BPh4]([2][BPh4]) with the appropriate alkynyllithium reagents LiC[triple bond]CR' (R'= Ph, Tol). The use of tetraphenylborate as counter anion associated with the cationic carbyne complexes has been decisive. The X-ray structures of (eta5-MeC5H4)(CO)2Mn=C(Tol)C[triple bond]CPh (3c), and its precursor [(eta5-MeC5H4)(CO)2Mn=CTol][BPh4]([2b](BPh4]) are reported. The reactivity of complexes toward phosphines has been investigated. In the presence of PPh3, complexes act as a Michael acceptor to afford the zwitterionic sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)=C=C(PPh3)R' (5) resulting from nucleophilic attack by the phosphine on the remote alkynyl carbon atom. Complexes 5 exhibit a dynamic process in solution, which has been rationalized in terms of a fast [NMR time-scale] rotation of the allene substituents around the allene axis; metrical features within the X-ray structure of (eta5-MeC5H4)(CO)2MnC(Ph)=C=C(PPh3)Tol (5b) support the proposal. In the presence of PMe3, complexes undergo a nucleophilic attack on the carbene carbon atom to give zwitterionic sigma-propargylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)(PMe3)C[triple bond]CR' (6). Complexes 6 readily isomerise in solution to give the sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R')=C=C(PMe3)R (7) through a 1,3 shift of the [(eta5-MeC5H4)(CO)2Mn] fragment. The nucleophilic attack of PPh2Me on 3 is not selective and leads to a mixture of the sigma-propargylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)(PPh(2)Me)C[triple bond]CR' (9) and the sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)=C=C(PPh(2)Me)R' (10). Like complexes 6, complexes 9 readily isomerize to give the sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R')=C=C(PPh2Me)R'). Upon gentle heating, complexes 7, and mixtures of 10 and 10' cyclise to give the sigma-dihydrophospholium complexes (eta5-MeC5H4)(CO)2MnC=C(R')PMe2CH2CH(R)(8), and mixtures of complexes (eta5-MeC5H4)(CO)2MnC=C(Ph)PPh2CH2CH(Tol)(11) and (eta5-MeC5H4)(CO)2MnC=C(Tol)PMe2CH2CH(Ph)(11'), respectively. The reactions of complexes 3 with secondary phosphines HPR(1)(2)(R1= Ph, Cy) give a mixture of the eta2-allene complexes (eta5-MeC5H4)(CO)2Mn[eta2-{R(1)(2)PC(R)=C=C(R')H}](12), and the regioisomeric eta4-vinylketene complexes [eta5-MeC5H4)(CO)Mn[eta4-{R(1)(2)PC(R)=CHC(R')=C=O}](13) and (eta5-MeC5H4)(CO)Mn[eta4-{R(1)(2)PC(R')=CHC(R)=C=O}](13'). The solid-state structure of (eta5-MeC5H4)(CO)2Mn[eta2-{Ph2PC(Ph)=C=C(Tol)H}](12b) and (eta5-MeC5H4)(CO)Mn[eta4-{Cy2PC(Ph)=CHC(Ph)=C=O}](13d) are reported. Finally, a mechanism that may account for the formation of the species 12, 13, and 13' is proposed.  相似文献   

18.
Ruthenium aqua complexes [(eta(6)-C(6)Me(6))Ru(II)(L)(OH(2))](2+) {L = bpy (1) and 4,4'-OMe-bpy (2), bpy = 2,2'-bipyridine, 4,4'-OMe-bpy = 4,4'-dimethoxy-2,2'-bipyridine} and iridium aqua complexes [Cp*Ir(III)(L)(OH(2))](2+) {Cp* = eta(5)-C(5)Me(5), L = bpy (5) and 4,4'-OMe-bpy (6)} act as catalysts for hydrogenation of CO(2) into HCOOH at pH 3.0 in H(2)O. The active hydride catalysts cannot be observed in the hydrogenation of CO(2) with the ruthenium complexes, whereas the active hydride catalysts, [Cp*Ir(III)(L)(H)](+) {L = bpy (7) and 4,4'-OMe-bpy (8)}, have successfully been isolated after the hydrogenation of CO(2) with the iridium complexes. The key to the success of the isolation of the active hydride catalysts is the change in the rate-determining step in the catalytic hydrogenation of CO(2) from the formation of the active hydride catalysts, [(eta(6)-C(6)Me(6))Ru(II)(L)(H)](+), to the reactions of [Cp*Ir(III)(L)(H)](+) with CO(2), as indicated by the kinetic studies.  相似文献   

19.
The labile nature of the coordinated water ligands in the organometallic aqua complex [Ru(dppe)(CO)(H(2)O)(3)][OTf](2) (1) (dppe = Ph(2)PCH(2)CH(2)PPh(2); OTf = OSO(2)CF(3)) has been investigated through substitution reactions with a range of incoming ligands. Dissolution of 1 in acetonitrile or dimethyl sulfoxide results in the facile displacement of all three waters to give [Ru(dppe)(CO)(CH(3)CN)(3)][OTf](2) (2) and [Ru(dppe)(CO)(DMSO)(3)][OTf](2) (3), respectively. Similarly, 1 reacts with Me(3)CNC to afford [Ru(dppe)(CO)(CNCMe(3))(3)][OTf](2) (4). Addition of 1 equiv of 2,2'-bipyridyl (bpy) or 4,4'-dimethyl-2,2'-bipyridyl (Me(2)bpy) to acetone/water solutions of 1 initially yields [Ru(dppe)(CO)(H(2)O)(bpy)][OTf](2) (5a) and [Ru(dppe)(CO)(H(2)O)(Me(2)bpy)][OTf](2) (6a), in which the coordinated water lies trans to CO. Compounds 5a and 6a rapidly rearrange to isomeric species (5b, 6b) in which the ligated water is trans to dppe. Further reactivity has been demonstrated for 6b, which, upon dissolution in CDCl(3), loses water and coordinates a triflate anion to afford [Ru(dppe)(CO)(OTf)(Me(2)bpy)][OTf] (7). Reaction of 1 with CH(3)CH(2)CH(2)SH gives the dinuclear bridging thiolate complex [[(dppe)Ru(CO)](2)(mu-SCH(2)CH(2)CH(3))(3)][OTf] (8). The reaction of 1 with CO in acetone/water is slow and yields the cationic hydride complex [Ru(dppe)(CO)(3)H][OTf] (9) via a water gas shift reaction. Moreover, the same mechanism can also be used to account for the previously reported synthesis of 1 upon reaction of Ru(dppe)(CO)(2)(OTf)(2) with water (Organometallics 1999, 18, 4068).  相似文献   

20.
The reaction of CpMo(CO)(dppe)Cl (dppe = Ph2PCH2CH2PPh2) with Na+[AlH2(OCH2CH2OCH3)2]- gives the molybdenum hydride complex CpMo(CO)(dppe)H, the structure of which was determined by X-ray crystallography. Electrochemical oxidation of CpMo(CO)(dppe)H in CH3CN is quasi-reversible, with the peak potential at -0.15 V (vs Fc/Fc+). The reaction of CpMo(CO)(dppe)H with 1 equiv of Ph3C+BF4- in CD3CN gives [CpMo(CO)(dppe)(NCCD3)]+ as the organometallic product, along with dihydrogen and Gomberg's dimer (which is formed by dimerization of Ph3C.). The proposed mechanism involves one-electron oxidation of CpMo(CO)(dppe)H by Ph3C+ to give the radical-cation complex [CpMo(CO)(dppe)H].+. Proton transfer from [CpMo(CO)(dppe)H].+ to CpMo(CO)(dppe)H, loss of dihydrogen from [CpMo(CO)(dppe)(H)2]+, and oxidation of Cp(CO)(dppe)Mo. by Ph3C+ lead to the observed products. In the presence of an amine base, the stoichiometry changes, with 2 equiv of Ph3C+ being required for each 1 equiv of CpMo(CO)(dppe)H because of deprotonation of [CpMo(CO)(dppe)H].+ by the amine. Protonation of CpMo(CO)(dppe)H by HOTf provides the dihydride complex [CpMo(CO)(dppe)(H)2]+OTf-, which loses dihydrogen to generate CpMo(CO)(dppe)(OTf).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号